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Abstract. Let Σ be a nonempty subset of the set of prime numbers
which is either equal to the entire set of prime numbers or of cardi-
nality one. In the present paper, we continue our study of the pro-Σ
fundamental groups of hyperbolic curves and their associated config-
uration spaces over algebraically closed fields in which the primes of
Σ are invertible. The present paper focuses on the topic of compar-
ison between the theory developed in earlier papers concerning pro-
Σ fundamental groups and various discrete versions of this theory.
We begin by developing a theory of combinatorial analogues of the
section conjecture and Grothendieck conjecture in anabelian
geometry for abstract combinatorial versions of the data that arises
from a hyperbolic curve over a complete discretely valued field, under
the condition that, for some l ∈ Σ, the l-adic cyclotomic character
has infinite image. This portion of the theory is purely combina-
torial and essentially follows from a result concerning the existence
of fixed points of actions of finite groups on finite graphs [satisfying
certain conditions] — a result which may be regarded as a geomet-
ric interpretation of the well-known elementary fact that free pro-Σ
groups are torsion-free. We then examine various applications of this
purely combinatorial theory to scheme theory. Next, we verify
various results in the theory of discrete fundamental groups of hy-
perbolic topological surfaces to the effect that various properties of
[discrete] subgroups of such groups hold if and only if analogous
properties hold for the closures of these subgroups in the profinite
completions of the discrete fundamental groups under considera-
tion. These results make possible a fairly straightforward trans-
lation, into discrete versions, of pro-Σ results obtained in previous
papers by the authors concerning the theory of partial combinatorial
cuspidalization, Dehn multi-twists, the tripod homomorphism, metric-
admissibility, and the characterization of local Galois groups in the
global Galois image associated to a hyperbolic curve. Finally, we con-
sider the analogue of the theory of tripods [i.e., copies of the pro-
Σ or discrete fundamental group of the projective line minus three
points] associated to cycles in a hyperbolic topological surface. From
an intuitive topological point of view, these tripods are obtained by
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considering once-punctured tubular neighborhoods of the cy-
cles. Such a construction was considered previously by M. Boggi in
the discrete case, but in the present paper, we consider it from the
point of view of the abstract pro-Σ theory developed in earlier pa-
pers by the authors and then proceed to relate this theory to the
discrete theory by applying the tools developed in earlier portions of
the present paper.
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Introduction

Let Σ ⊆ Primes be a subset of the set of prime numbers Primes
which is either equal to Primes or of cardinality one. In the present
paper, we continue our study of the pro-Σ fundamental groups
of hyperbolic curves and their associated configuration spaces over al-
gebraically closed fields in which the primes of Σ are invertible [cf.
[CmbGC], [MT], [CmbCsp], [NodNon], [CbTpI], [CbTpII], [CbTpIII]].
The present paper focuses on the topic of understanding the relation-
ship between the theory developed in earlier papers concerning pro-Σ
fundamental groups and various discrete versions of this theory. This
topic of comparison of pro-Σ and discrete versions of the theory turns
out to be closely related, in many situations, to the theory of sections
of various natural surjections of profinite groups. Indeed, this rela-
tionship with the theory of sections is, in some sense, not surprising,
inasmuch as sections typically amount to some sort of fixed point
within a profinite continuum. That is to say, such fixed points are
often closely related to the identification of a rigid discrete structure
within the profinite continuum.
In §1, §2, we study two different aspects of this topic of compari-

son of pro-Σ and discrete structures. Both §1 and §2 follow the same
pattern: we begin by proving an abstract and somewhat technical com-
binatorial result and then proceed to discuss various applications of
this combinatorial result.
In §1, the main technical combinatorial result is summarized in The-

orem A below [where Σ is allowed to be an arbitrary nonempty set of
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prime numbers]. This result consists of versions of the section con-
jecture and Grothendieck conjecture — i.e., the central issues of
concern in anabelian geometry — for outer representations of
ENN-type [cf. Definition 1.7, (i)]. Here, we remark that outer repre-
sentations of ENN-type are generalizations of the outer representations
of NN-type studied in [NodNon]. Just as an outer representation of
NN-type may be described, roughly speaking, as a purely combinato-
rial object modeled on the outer Galois representation arising from a
hyperbolic curve over a complete discretely valued field whose residue
field is separably closed, an outer representation of ENN-type may be
described, again roughly speaking, as an analogous sort of purely com-
binatorial object that arises in the case where the residue field is not
necessarily separably closed. The pro-Σ section conjecture portion of
Theorem A [i.e., Theorem 1.13, (i)] is then obtained by combining

• the essential uniqueness of fixed points of certain group
actions on profinite graphs given in [NodNon], Proposition 3.9,
(i), (ii), (iii), with

• an essentially classical result concerning the existence of fixed
points [cf. Lemma 1.6; Remarks 1.6.1, 1.6.2], which amounts,
in essence, to a geometric reformulation of the well-known fact
that free pro-Σ groups are torsion-free [cf. Remarks 1.13.1;
1.15.2, (i)].

The argument applied to prove this pro-Σ section conjecture portion of
Theorem A is essentially similar to the argument applied in the tem-
pered case discussed in [SemiAn], Theorems 3.7, 5.4, which is reviewed
[in slightly greater generality] in the tempered section conjecture por-
tion of Theorem A [cf. Theorem 1.13, (ii)]. These section conjecture
portions of Theorem A imply, under suitable conditions, that there is a
natural bijection between conjugacy classes of pro-Σ and tempered
sections [cf. Theorem 1.13, (iii)]. This implication may be regarded as
an important example of the phenomenon discussed above, i.e., that
considerations concerning sections are closely related to the topic of
comparison of pro-Σ and discrete structures. Finally, by combining the
pro-Σ section conjecture portion of Theorem A with the combinatorial
version of the Grothendieck conjecture obtained in [CbTpII], Theorem
1.9, (i), one obtains the Grothendieck conjecture portion of Theorem A
[cf. Corollary 1.14].

Theorem A (Combinatorial versions of the section conjecture
and Grothendieck conjecture). Let Σ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, G a profi-
nite group, and ρ : G→ Aut(G) a continuous homomorphism that is of
ENN-type for a conducting subgroup IG ⊆ G [cf. Definition 1.7,
(i)]. Write ΠG for the [pro-Σ] fundamental group of G and Πtp

G for the
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tempered fundamental group of G [cf. [SemiAn], Example 2.10; the dis-
cussion preceding [SemiAn], Proposition 3.6]. [Thus, we have a natural
outer injection Πtp

G ↪→ ΠG — cf. [CbTpIII], Lemma 3.2, (i); the proof of

[CbTpIII], Proposition 3.3, (i), (ii).] Write ΠG
def
= ΠG

out
� G [cf. the dis-

cussion entitled “Topological groups” in [CbTpI], §0]; Πtp
G

def
= Πtp

G
out
� G;

G̃ → G, G̃tp → G for the universal pro-Σ and pro-tempered coverings of
G corresponding to ΠG, Π

tp
G ; VCN(−) for the set of vertices, cusps, and

nodes of the underlying [pro-]semi-graph of a [pro-]semi-graph of an-
abelioids [cf. Definition 1.1, (i)]. Thus, we have a natural commutative
diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows

are outer injections; Πtp
G acts naturally on G̃tp; ΠG acts naturally on

G̃. Then the following hold:

(i) Suppose that ρ is l-cyclotomically full [cf. Definition 1.7,
(ii)] for some l ∈ Σ. Let s : G→ ΠG be a continuous section of
the natural surjection ΠG � G. Then, relative to the action of

ΠG on VCN(G̃) via conjugation of VCN-subgroups, the image

of s stabilizes some element of VCN(G̃).
(ii) Let s : G → Πtp

G be a continuous section of the natural surjec-

tion Πtp
G � G. Then, relative to the action of Πtp

G on VCN(G̃tp)
via conjugation of VCN-subgroups [cf. Definition 1.9], the im-

age of s stabilizes some element of VCN(G̃tp).
(iii) Write Sect(ΠG/G) for the set of ΠG-conjugacy classes of con-

tinuous sections of the natural surjective homomorphism ΠG �
G and Sect(Πtp

G /G) for the set of Πtp
G -conjugacy classes of

continuous sections of the natural surjective homomorphism
Πtp

G � G. Then the natural map

Sect(Πtp
G /G) −→ Sect(ΠG/G)

is injective. If, moreover, ρ is l-cyclotomically full for
some l ∈ Σ, then this map is bijective.

(iv) Let H be a semi-graph of anabelioids of pro-Σ PSC-type, H
a profinite group, ρH : H → Aut(H) a continuous homomor-
phism that is of ENN-type for a conducting subgroup
IH ⊆ H. Write ΠH for the [pro-Σ] fundamental group of H.
Suppose further that ρ is verticially quasi-split [cf. Defini-

tion 1.7, (i)]. Let β : G
∼→ H be a continuous isomorphism

such that β(IG) = IH ; l ∈ Σ a prime number such that ρG
def
= ρ
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and ρH are l-cyclotomically full; α : ΠG
∼→ ΠH a continuous

isomorphism such that the diagram

G
ρG−→ Aut(G) ↪−→ Out(ΠG)

β
|
↓

|
↓

H
ρH−→ Aut(H) ↪−→ Out(ΠH)

— where the right-hand vertical arrow is the isomorphism ob-
tained by conjugating by α — commutes. Then α is graphic
[cf. [CmbGC], Definition 1.4, (i)].

The purely combinatorial theory of §1 — i.e., the theory surrounding
and including Theorem A — has important applications to scheme
theory — i.e., to the theory of hyperbolic curves over quite general
complete discretely valued fields — as follows:

(A-1) We observe that a quite general result in the style of the
main results of [PS] concerning valuations fixed by sections
of the arithmetic fundamental group follows formally, in the
case of hyperbolic curves over quite general complete discretely
valued fields, from Theorem A [cf. Corollary 1.15, (iii); Re-
mark 1.15.2, (i), (ii)]. The quite substantial generality of this
result is a reflection of the purely combinatorial nature of
Theorem A. This approach contrasts substantially with the
approach of [PS] via essentially scheme-theoretic techniques
such as the local-global principle for the Brauer group [cf. Re-
mark 1.15.2, (i)]. The approach of the present paper also differs
substantially from [PS] in that the transition from fixed points
of graphs to fixed valuations is treated as a formal consequence
of well-known elementary properties of Berkovich spaces, i.e.,
in essence the compactness of the unit interval [0, 1] ⊆ R [cf.
Remark 1.15.2, (ii)].

(A-2) We observe that the natural bijection between conjugacy classes
of pro-Σ and tempered sections discussed in the purely com-
binatorial setting of Theorem A implies a similar bijection in
the case of hyperbolic curves over quite general complete dis-
cretely valued fields [cf. Corollary 1.15, (vi)]. This portion of
the theory was partially motivated by discussions between the
second author and Y. André.

In the context of (A-1), we remark that, in the Appendix to the present
paper, we give an elementary exposition from the point of view of two-
dimensional log regular log schemes of the phenomenon of conver-
gence of valuations, without applying the language or notions, such
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as Stone-Čech compactifications, typically applied in expositions of the
theory of Berkovich spaces.
In §2, we turn to the task of formulating discrete analogues of

a substantial portion of the theory developed in earlier papers. This
formulation centers around the notion of a semi-graph of temper-
oids of HSD-type [i.e., “hyperbolic surface decomposition type” —
cf. Definition 2.3, (iii)], which may be thought of as a natural discrete
analogue of the notion of a semi-graph of anabelioids of pro-Σ PSC-
type [cf. [CmbGC], Definition 1.1, (i)]. As the name suggests, this
notion may be thought of as referring to the sort of collection of dis-
crete combinatorial data that one may associate to a decomposition of
a hyperbolic surface into hyperbolic subsurfaces. Alternatively, it may
be thought of as referring to the sort of collection of combinatorial
data that arises from systems of topological coverings of the system of
topological spaces naturally associated to a stable log curve over a log
point whose underlying scheme is the spectrum of the field of complex
numbers [cf. Example 2.4, (i)]. After discussing various basic proper-
ties and terms related to semi-graphs of temperoids of HSD-type [cf.
Proposition 2.5; Definitions 2.6, 2.7], we observe that the fundamen-
tal operations of restriction, partial compactification, resolution,
and generization discussed in [CbTpI], §2, admit natural compatible
analogues for semi-graphs of temperoids of HSD-type [cf. Definitions
2.8, 2.9; Proposition 2.10].
The main technical combinatorial result of §2 is summarized in The-

orem B below. This result asserts, in effect, that discrete subgroups of
the discrete fundamental group of a semi-graph of temperoids of HSD-
type satisfy various properties of interest if and only if the profinite
completions of these discrete subgroups satisfy analogous properties
[cf. Theorem 2.15; Corollary 2.19, (i)]. The main technical tool that is
applied in order to derive this result is the fact that any inclusion of a
finitely generated group into a [finitely generated] free discrete group is,
after possibly passing to a suitable finite index subgroup, necessarily
split [cf. [SemiAn], Corollary 1.6, (ii), which is applied in the proof of
Lemma 2.14, (i), of the present paper]. Here, we recall that in [SemiAn],
this fact [i.e., [SemiAn], Corollary 1.6, (ii)] is obtained as an immedi-
ate consequence of “Zariski’s main theorem for semi-graphs” [cf.
[SemiAn], Theorem 1.2].

Theorem B (Profinite versus discrete subgroups). Let G, H
be semi-graphs of temperoids of HSD-type [cf. Definition 2.3, (iii)].

Write Ĝ, Ĥ for the semi-graphs of anabelioids of pro-Primes PSC-
type determined by G, H [cf. Proposition 2.5, (iii), in the case where
Σ = Primes], respectively; ΠG, ΠH for the respective fundamental
groups of G, H [cf. Proposition 2.5, (i)]; ΠĜ, ΠĤ for the respective

[profinite] fundamental groups of Ĝ, Ĥ. Then the following hold:
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(i) Let H, J ⊆ ΠG be subgroups. Since ΠG injects into its pro-
l completion for any l ∈ Primes [cf. Remark 2.5.1], let us
regard subgroups of ΠG as subgroups of the profinite completion

Π̂G of ΠG. Write H, J ⊆ Π̂G for the closures of H, J in Π̂G,
respectively. Suppose that the following conditions are satisfied:
(a) The subgroups H and J are finitely generated.
(b) If J is of infinite index in ΠG, then J is of infinite

index in Π̂G.
[Here, we note that condition (b) is automatically satisfied when-
ever Cusp(G) �= ∅ — cf. [SemiAn], Corollary 1.6, (ii).] Then
the following hold:
(1) It holds that J = J ∩ ΠG.

(2) Suppose that there exists an element γ̂ ∈ Π̂G such that

H ⊆ γ̂ · J · γ̂−1.

Then there exists an element δ ∈ ΠG such that

H ⊆ δ · J · δ−1.

(ii) Let

α : ΠG
∼−→ ΠH

be an outer isomorphism. Write α̂ : ΠĜ
∼→ ΠĤ for the outer

isomorphism determined by α and the natural outer isomor-

phisms Π̂G
∼→ ΠĜ, Π̂H

∼→ ΠĤ of Proposition 2.5, (iii).
Then the outer isomorphism α is group-theoretically ver-
ticial (respectively, group-theoretically cuspidal; group-
theoretically nodal; graphic) [cf. Definition 2.7, (i), (ii)] if
and only if the outer isomorphism α̂ is group-theoretically
verticial [cf. [CmbGC], Definition 1.4, (iv)] (respectively,
group-theoretically cuspidal [cf. [CmbGC], Definition 1.4,
(iv)]; group-theoretically nodal [cf. [NodNon], Definition
1.12]; graphic [cf. [CmbGC], Definition 1.4, (i)]).

The significance of Theorem B lies in the fact that it renders possi-
ble a fairly straightforward translation of a substantial portion of the
profinite results obtained in earlier papers by the authors into discrete
versions, as follows:

(B-1) the partial combinatorial cuspidalization obtained in [CbTpI],
Theorem A; [CbTpII], Theorem A [cf. Corollary 2.20 of the
present paper];

(B-2) the theory of Dehn multi-twists summarized in [CbTpI],
Theorem B [cf. Corollary 2.21 of the present paper];

(B-3) the theory of the tripod homomorphism andmetric-admissibility
summarized in [CbTpII], Theorem C; [CbTpIII], Theorems A,
C, D [cf. Theorem 2.24 of the present paper];
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(B-4) the archimedean analogue [cf. Corollary 2.25 of the present
paper] of the characterization, given in [CbTpIII], Theorem
B, of nonarchimedean local Galois groups in the global
Galois image associated to a hyperbolic curve.

Finally, in §3, we examine the theory of canonical liftings of cy-
cles discussed in [Bgg2] from the point of view of the profinite theory
developed so far by the authors. This approach contrasts substan-
tially with the intuitive topological approach of [Bgg2] in the discrete
case. From a naive topological point of view, the canonical liftings of
cycles in question amount to once-punctured tubular neighbor-
hoods of the given cycles [cf. Figure 1 below], i.e., to the construction
of a tripod [i.e., a copy of the projective line minus three points] canon-
ically and functorially associated to the cycle. This tripod satisfies a
remarkable rigidity property, i.e., it admits a canonical isomor-
phism, subject to almost no indeterminacies, with a given fixed tripod
that is independent of the choice of the cycle. Moreover, this canonical
isomorphism is functorial with respect to “geometric” outer automor-
phisms of the profinite fundamental group of the stable log curve under
consideration that lift to automorphisms of the profinite fundamental
group of a configuration space [associated to the stable log curve] of
sufficiently high dimension. Here, by “geometric”, we mean that the
outer automorphism under consideration lies in the kernel of the tripod
homomorphism studied in [CbTpII], §3. Indeed, this remarkable rigid-
ity property is obtained as an immediate consequence of the theory of
tripod synchronization developed in [CbTpII], §3.
The profinite version of the theory of canonical liftings of cycles

developed in §3 is summarized in Theorem C below [cf. Theorem 3.10].
By applying the translation apparatus developed in §2 to this profinite
version of the theory, we also obtain a corresponding discrete version
of the theory of canonical liftings of cycles [cf. Theorem 3.14].

Theorem C (Canonical liftings of cycles). Let (g, r) be a pair
of nonnegative integers such that 2g − 2 + r > 0; Σ a set of prime
numbers which is either equal to the entire set of prime numbers or of
cardinality one; k an algebraically closed field of characteristic �∈ Σ;

Slog def
= Spec(k)log the log scheme obtained by equipping S

def
= Spec(k)

with the log structure determined by the fs chart N → k that maps
1 	→ 0; X log = X log

1 a stable log curve of type (g, r) over Slog. For
positive integers m ≤ n, write

X log
n

for the n-th log configuration space of the stable log curve X log [cf. the
discussion entitled “Curves” in [CbTpI], §0];

Πn
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for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
n ) � π1(S

log);

plogn/m : X log
n −→ X log

m , pΠn/m : Πn � Πm,

Πn/m
def
= Ker(pΠn/m) ⊆ Πn, G, ΠG

for the objects defined in the discussion at the beginning of [CbTpII],
§3; [CbTpII], Definition 3.1. Let I ⊆ Π2/1 ⊆ Π2 be a cuspidal inertia

group associated to the diagonal cusp of a fiber of plog2/1; Πtpd ⊆ Π3 a

3-central {1, 2, 3}-tripod of Π3 [cf. [CbTpII], Definition 3.7, (ii)];
Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does not arise from a

cusp of a fiber of plog3/2; J
∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal subgroups of Πtpd

such that Itpd, J
∗
tpd, and J

∗∗
tpd determine three distinct Πtpd-conjugacy

classes of closed subgroups of Πtpd. [Note that one verifies immediately
from the various definitions involved that such cuspidal subgroups Itpd,
J∗
tpd, and J

∗∗
tpd always exist.] For positive integers n ≥ 2, m ≤ n and

α ∈ AutFC(Πn) [cf. [CmbCsp], Definition 1.1, (ii)], write

αm ∈ AutFC(Πm)

for the automorphism of Πm determined by α;

AutFC(Πn, I) ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that β2(I) = I;

AutFC(Πn)
G ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that the image of β
via the composite AutFC(Πn) � OutFC(Πn) ↪→ OutFC(Π1) → Out(ΠG)
— where the second arrow is the natural injection of [NodNon], Theo-
rem B, and the third arrow is the homomorphism induced by the natural
outer isomorphism Π1

∼→ ΠG — is graphic [cf. [CmbGC], Definition
1.4, (i)];

AutFC(Πn, I)
G def

= AutFC(Πn, I) ∩ AutFC(Πn)
G;

Cyclen(Π1)

for the set of n-cuspidalizable cycle-subgroups of Π1 [cf. Defini-
tion 3.5, (i), (ii)];

TpdI(Π2/1)

for the set of closed subgroups T ⊆ Π2/1 such that T is a tripodal sub-
group associated to some 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.6, (i)], and, moreover, I is a distinguished cuspidal
subgroup [cf. Definition 3.6, (ii)] of T . Then the following hold:

(i) Let n ≥ 3 be a positive integer. Then AutFC(Πn, I)
G acts

naturally on Cyclen(Π1), TpdI(Π2/1); there exists a unique

AutFC(Πn, I)
G-equivariant map

CI : Cycle
n(Π1) −→ TpdI(Π2/1)
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such that, for every J ∈ Cyclen(Π1), CI(J) is a tripodal sub-
group associated to J [cf. Definition 3.6, (i)]. Moreover, there
exists an assignment

Cyclen(Π1) � J 	→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms

Πtpd
∼→ CI(J) — such that

(a) synI,J maps Itpd bijectively onto I,
(b) synI,J maps the subgroups J∗

tpd, J
∗∗
tpd bijectively onto lift-

ing cycle-subgroups of CI(J) [cf. Definition 3.6, (ii)],
and

(c) for α ∈ AutFC(Πn, I)
G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely de-
termined — cf. the commensurable terminality of Itpd in
Πtpd discussed in [CmbGC], Proposition 1.2, (ii)] Itpd-
conjugacy class of automorphisms of Πtpd that lifts TΠtpd

(α)
[cf. [CbTpII], Definition 3.19] and preserves Itpd; the lower
horizontal arrow is the I-conjugacy class of isomorphisms
induced by α2 [cf. the “AutFC(Πn, I)

G-equivariance” men-
tioned above] — commutes up to possible composition
with the cycle symmetry of CI(α1(J)) associated to I
[cf. Definition 3.8].

Finally, the assignment

J 	→ synI,J

is uniquely determined, up to possible composition with cy-
cle symmetries, by these conditions (a), (b), and (c).

(ii) Let n ≥ 4 be a positive integer, α ∈ AutFC(Πn, I)
G, and

J ∈ Cyclen(Π1). Then there exists an automorphism β ∈
AutFC(Πn, I)

G such that the FC-admissible outer automorphism
of Π3 determined by β3 lies in the kernel of the tripod homo-
morphism TΠtpd

of [CbTpII], Definition 3.19, and, moreover,
α1(J) = β1(J). Finally, the diagram [of Itpd-, I-conjugacy
classes of isomorphisms]

Πtpd Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))
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— where the lower horizontal arrow is the isomorphism in-
duced by β2 [cf. the “AutFC(Πn, I)

G-equivariance” mentioned
in (i)] — commutes up to possible composition with the cycle
symmetry of CI(α1(J)) = CI(β1(J)) associated to I.

a cycle lifting cycles

Figure 1: A cycle and lifting cycles
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0. Notations and Conventions

Sets: Let S be a finite set. Then we shall write S� for the cardinality
of S.
Let S be a set equipped with an action by a group G. Then we shall

write SG ⊆ S for the subset consisting of elements of S fixed by the
action of G on S.

Numbers: Write Primes for the set of all prime numbers. Let Σ be a
set of prime numbers. Then we shall refer to a nonzero integer n as a
Σ-integer if every prime divisor of n is contained in Σ. The notation R

will be used to denote the set, additive group, or field of real numbers,
each of which we regard as being equipped with its usual topology. The
notation C will be used to denote the set, additive group, or field of
complex numbers, each of which we regard as being equipped with its
usual topology.

Groups: Let Σ be a set of prime numbers and f : G→ H a homomor-
phism (respectively, outer homomorphism) of groups. Then we shall
say that f is Σ-compatible if the homomorphism (respectively, outer
homomorphism) fΣ : GΣ → HΣ between pro-Σ completions induced
by f is injective. Note that one verifies easily that if G is a group, and
H ⊆ G is a subgroup of G of finite index, then the natural inclusion
H ↪→ G is Primes-compatible. If G is a topological group, then we
shall write

Gab

for the abelianization of G, i.e., the quotient of G by the closed normal
subgroup of G generated by the commutators of G. If G is a profinite
group, then we shall write

G� GΣ-ab-free

for the maximal pro-Σ abelian torsion-free quotient of G. We shall use
the terms normally terminal and commensurably terminal as they are
defined in the discussion entitled “Topological groups” in [CbTpI], §0.
If I, J ⊆ G are closed subgroups of a topological group G, then we
shall write

I ≺ J

if some open subgroup of I is contained in J .
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1. The combinatorial section conjecture

In the present §1, we study outer representations of ENN-type [cf.
Definition 1.7, (i), below] on the fundamental group of a semi-graph
of anabelioids of PSC-type [cf. [CmbGC], Definition 1.1, (i)]. Roughly
speaking, such outer representations may be thought of as an abstract
combinatorial version of the natural outer representation of the maxi-
mal tamely ramified quotient of the absolute Galois group of a complete
local field on the logarithmic fundamental group of the geometric spe-
cial fiber of a stable model of a pointed stable curve over the complete
local field. By comparison to the outer representation of NN-type stud-
ied in [NodNon], outer representations of ENN-type correspond to the
situation in which the residue field of the complete local field under
consideration is not necessarily separably closed. Such outer represen-
tations of ENN-type give rise to a surjection of profinite groups, which
corresponds, in the case of pointed stable curves over complete local
fields, to the surjection from the arithmetic fundamental group to [some
quotient of] the absolute Galois group of the base field. Our first main
result [cf. Theorem 1.13, (i), below] asserts that, under the additional
assumption that the associated cyclotomic character has open image,
any section of this surjection necessarily admits a fixed point [i.e., a
fixed vertex or edge]. This “combinatorial section conjecture” is ob-
tained as an immediate consequence of an essentially classical result
concerning fixed points of group actions on graphs [cf. Lemma 1.6 be-
low]. By applying this existence of fixed points, we show that there is
a natural bijection between conjugacy classes of profinite sections and
conjugacy classes of tempered sections [cf. Theorem 1.13, (iii), below]
and derive a rather strong version of the combinatorial Grothendieck
conjecture [cf. [NodNon], Theorem A; [CbTpII], Theorem 1.9] for cy-
clotomically full outer representations of ENN-type [cf. Corollary 1.14
below]. We also observe in passing that a generalization of the main
result of [PS] may be obtained as a consequence of the theory discussed
in the present §1 [cf. Corollary 1.15 below].

In the present §1, let Σ be a nonempty set of prime numbers and G a
semi-graph of anabelioids of pro-Σ PSC-type [cf. [CmbGC], Definition
1.1, (i)]. Write G for the underlying semi-graph of G, ΠG for the [pro-Σ]
fundamental group of G, and Πtp

G for the tempered fundamental group
of G [cf. [SemiAn], Example 2.10; the discussion preceding [SemiAn],
Proposition 3.6]. Thus, we have a natural outer injection

Πtp
G ↪→ ΠG

— cf. [CbTpIII], Lemma 3.2, (i); the proof of [CbTpIII], Proposition
3.3, (i), (ii). Let us write

G̃ −→ G, G̃tp −→ G
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for the universal pro-Σ and pro-tempered coverings of G corresponding
to ΠG, Π

tp
G and

VCN(G̃) def
= lim←− VCN(H), VCN(G̃tp)

def
= lim←− VCN(Htp)

— where H (respectively, Htp) ranges over the subcoverings of G̃ → G
(respectively, G̃tp → G) corresponding to open subgroups of ΠG (re-
spectively, Πtp

G ), and VCN(−) denotes the “VCN(−)” of the under-
lying semi-graph of the semi-graph of anabelioids in parentheses [cf.
Definition 1.1, (i), below; [NodNon], Definition 1.1, (iii)].
We begin by reviewing certain well-known facts concerning semi-

graphs and group actions on semi-graphs.

Definition 1.1. Let Γ be a semi-graph [cf. the discussion at the be-
ginning of [SemiAn], §1].

(i) We shall write Vert(Γ) (respectively, Cusp(Γ); Node(Γ)) for
the set of vertices (respectively, open edges, i.e., “cusps”; closed

edges, i.e., “nodes”) of Γ. We shall write Edge(Γ)
def
= Cusp(Γ)�

Node(Γ); VCN(Γ)
def
= Vert(Γ) � Edge(Γ).

(ii) We shall write

VΓ : Edge(Γ) −→ 2Vert(Γ)

(respectively, CΓ : Vert(Γ) −→ 2Cusp(Γ);

NΓ : Vert(Γ) −→ 2Node(Γ);

EΓ : Vert(Γ) −→ 2Edge(Γ))

[cf. (i); the discussion entitled “Sets” in [CbTpI], §0] for the
map obtained by sending e ∈ Edge(Γ) (respectively, v ∈ Vert(Γ);
v ∈ Vert(Γ); v ∈ Vert(Γ)) to the set of vertices (respectively,
open edges; closed edges; edges) of Γ to which e abuts (respectively,
which abut to v; which abut to v; which abut to v). For sim-
plicity, we shall write V (resp C; N ; E) instead of VΓ (resp CΓ;
NΓ; EΓ) when there is no danger of confusion.

(iii) Let n be a nonnegative integer; v, w ∈ Vert(Γ) [cf. (i)]. Then
we shall write δ(v, w) ≤ n if the following conditions are satis-
fied:

• If n = 0, then v = w.
• If n ≥ 1, then either δ(v, w) ≤ n−1 or there exist n closed
edges e1, . . . , en ∈ Node(Γ) of Γ [cf. (i)] and n+1 vertices
v0, . . . , vn ∈ Vert(Γ) of Γ such that v0 = v, vn = w, and,
for 1 ≤ i ≤ n, it holds that V(ei) = {vi−1, vi} [cf. (ii)].

Moreover, we shall write δ(v, w) = n if δ(v, w) ≤ n but δ(v, w) �≤
n − 1. If δ(v, w) = n, then we shall say that the distance be-
tween v and w is equal to n.
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Definition 1.2. Let Γ be a semi-graph.

(i) Let G be a group that acts on Γ. Then [by a slight abuse
of notation, relative to the notation defined in the discussion
entitled “Sets” in §0] we shall write

ΓG

for the semi-graph [i.e., the “G-invariant portion of Γ”] defined
as follows:

• We take Vert(ΓG) to be Vert(Γ)G [cf. Definition 1.1, (i);
the discussion entitled “Sets” in §0].

• We take Edge(ΓG) to be Edge(Γ)G [cf. Definition 1.1, (i);
the discussion entitled “Sets” in §0].

• Let e ∈ Edge(ΓG) = Edge(Γ)G. Then the coincidence
map

ζe : e −→ Vert(ΓG) ∪ {Vert(ΓG)}
of ΓG [cf. item (3) of the discussion at the beginning
of [SemiAn], §1] is defined as follows: Write ζΓe : e →
Vert(Γ) ∪ {Vert(Γ)} for the coincidence map associated
to Γ. Then, for b ∈ e, if b ∈ eG and ζΓe (b) ∈ Vert(Γ)G

(respectively, if either b �∈ eG or ζΓe (b) �∈ Vert(Γ)G), then

we set ζe(b)
def
= ζΓe (b) (respectively,

def
= Vert(ΓG)). In par-

ticular, it holds that VΓG(e) = VΓ(e)∩Vert(Γ)G [cf. Defini-
tion 1.1, (ii)] whenever it holds either that Γ is untangled
[i.e., every node abuts to two distinct vertices — cf. the
discussion entitled “Semi-graphs” in [NodNon], §0] or that
G acts on Γ without inversion [i.e., that if e ∈ Edge(Γ)G,
then e = eG].

(ii) We shall write

Γ÷

for the semi-graph [i.e., the result of “subdividing” Γ] defined
as follows:

• We take Vert(Γ÷) to be Vert(Γ) � Edge(Γ).
• We take Edge(Γ÷) to be the set of branches of Γ.
• Let b be a branch of an edge e of Γ. Write e(b) ∈ Edge(Γ÷),
v(e) ∈ Vert(Γ÷) for the edge and vertex of Γ÷ correspond-
ing to b, e, respectively. If b abuts, relative to Γ, to a ver-
tex v ∈ Vert(Γ), then we take the edge e(b) to be a node
that abuts to v(e) and the vertex of Γ÷ corresponding to
v ∈ Vert(Γ). If b does not abut, relative to Γ, to a vertex
of Γ, then we take the edge e(b) to be a cusp that abuts
to v(e).
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Definition 1.3. Let Γ be a semi-graph and Γ0 ⊆ Γ a sub-semi-graph
[cf. [SemiAn], the discussion following the figure entitled “A Typical
Semi-graph”] of Γ.

(i) We shall write
Γ�
0 ⊆ Γ

for the sub-semi-graph of Γ [i.e., whenever a suitable condi-
tion is satisfied [cf. Lemma 1.4, (v), below], a sort of “open
neighborhood” of Γ0] whose sets of vertices and edges are de-
fined as follows. [Here, we recall that it follows immediately
from the definition of a sub-semi-graph that a sub-semi-graph
is completely determined by its sets of vertices and edges.]

• We take Vert(Γ�
0 ) to be Vert(Γ0).

• We take Edge(Γ�
0 ) to be the set of edges e of Γ such that

VΓ(e) ∩ Vert(Γ0) �= ∅.
(ii) We shall write

Γ �∈
0 ⊆ Γ

for the sub-semi-graph of Γ whose sets of vertices and edges are
taken to be Vert(Γ)\Vert(Γ0), Edge(Γ)\Edge(Γ0), respectively.

(iii) We shall write Γ �∈�
0

def
= (Γ �∈

0 )
� [cf. (i), (ii)].

(iv) We shall say that an edge e of Γ is a Γ0-bridge if VΓ(e) ∩
Vert(Γ0), VΓ(e) ∩ Vert(Γ �∈

0 ) �= ∅. [Thus, one verifies easily that
every Γ0-bridge is a node.] We shall write Brdg(Γ0 ⊆ Γ) ⊆
Node(Γ) for the set of Γ0-bridges of Γ. By abuse of notation,
we shall write Brdg(Γ0 ⊆ Γ) ⊆ Γ for the sub-semi-graph of
Γ whose sets of vertices and edges are taken to be ∅ [i.e., the
empty set], Brdg(Γ0 ⊆ Γ) ⊆ Node(Γ), respectively.

Lemma 1.4 (Basic properties of sub-semi-graphs). Let Γ be a
semi-graph, Γ0 ⊆ Γ a sub-semi-graph [cf. [SemiAn], the discussion fol-
lowing the figure entitled “A Typical Semi-graph”] of Γ, G a group, and
ρ : G→ Aut(Γ) an action of G on Γ. Then the following hold:

(i) Suppose either that Γ is untangled or that G acts on Γ with-
out inversion. Then the semi-graph ΓG [cf. Definition 1.2,
(i)] may be regarded, in a natural way, as a sub-semi-graph
of Γ.

(ii) Suppose that G acts on Γ without inversion, and that every
edge of Γ abuts to at least one vertex of Γ. Then every edge
of ΓG abuts to at least one vertex of ΓG.

(iii) The semi-graph Γ÷ [cf. Definition 1.2, (ii)] is untangled.
(iv) There exists a natural injection Aut(Γ) ↪→ Aut(Γ÷). More-

over, the resulting action ρ÷ of G on Γ÷ [i.e., the composite

G
ρ→ Aut(Γ) ↪→ Aut(Γ÷)] is an action without inversion.

Finally, it holds that ΓG = ∅ if and only if (Γ÷)G = ∅.
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(v) Suppose that every edge of Γ0 abuts to at least one vertex
of Γ0. Then Γ0 may be regarded, in a natural way, as a sub-
semi-graph of Γ�

0 [cf. Definition 1.3, (i)].
(vi) We have an equality of subsets of Edge(Γ):

Edge(Γ�
0 ) ∩ Edge(Γ �∈�

0 ) = Brdg(Γ0 ⊆ Γ).

Proof. The assertions of Lemma 1.4 follow immediately from the vari-
ous definitions involved. �

Lemma 1.5 (Sub-semi-graphs of invariants). In the situation of
Lemma 1.4, suppose either that Γ is untangled or that G acts on
Γ without inversion. Suppose, moreover, that the sub-semi-graph
Γ0 ⊆ Γ is a connected component of the sub-semi-graph ΓG ⊆ Γ
[cf. Lemma 1.4, (i)]. Then the following hold:

(i) The action ρ naturally determines actions of G on Γ0, Γ�
0 ,

Γ �∈�
0 , respectively.

(ii) The intersection of Γ�
0 ⊆ Γ with any connected component of

ΓG ⊆ Γ that is �= Γ0 is empty.
(iii) We have an equality of subsets of Edge(Γ):

Edge(ΓG) ∩ Brdg(Γ�
0 ⊆ Γ) = ∅.

Proof. The assertions of Lemma 1.5 follow immediately from the vari-
ous definitions involved. �

Lemma 1.6 (Existence of fixed points). Let Γ be a finite con-
nected [hence nonempty] semi-graph, G a finite solvable group
whose order is a Σ-integer [cf. the discussion entitled “Numbers” in
§0], and

ρ : G −→ Aut(Γ)

an action of G on Γ. Write Πdisc
Γ for the [discrete] topological funda-

mental group of Γ; ΠΣ
Γ for the pro-Σ completion of Πdisc

Γ ; Γ̃disc → Γ,

Γ̃Σ → Γ for the discrete, pro-Σ universal coverings of Γ corresponding

to Πdisc
Γ , ΠΣ

Γ , respectively. Let � ∈ {disc,Σ}. Write Aut(Γ̃� → Γ) ⊆
Aut(Γ̃�) for the group of automorphisms α̃ of Γ̃� such that α̃ lies over
a(n) [necessarily unique] automorphism α of Γ;

Aut(Γ̃� → Γ) −→ Aut(Γ)
α̃ 	→ α

for the resulting natural homomorphism;

Π�
Γ//G

def
= Aut(Γ̃� → Γ)×Aut(Γ) G
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for the fiber product of the natural homomorphism Aut(Γ̃� → Γ) →
Aut(Γ) and the action ρ : G → Aut(Γ). Thus, one verifies easily that
Π�

Γ//G fits into an exact sequence

1 −→ Π�
Γ −→ Π�

Γ//G −→ G −→ 1.

Let s : G → Π�
Γ//G be a section of the above exact sequence. Write

ρ̃�s : G → Aut(Γ̃�) for the action obtained by forming the compos-

ite G
s→ Π�

Γ//G

pr1→ Aut(Γ̃� → Γ) ↪→ Aut(Γ̃�). We shall say that a

connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ is G-compatible if
Γ∗ → Γ is Galois, and, moreover, the corresponding normal open sub-
group of ΠΣ

Γ is preserved by the outer action of G, via ρ, on ΠΣ
Γ . If

Γ∗ → Γ is a G-compatible connected finite subcovering of Γ̃Σ → Γ, then
let us write ρs,∗ : G→ Aut(Γ∗) for the action of G on Γ∗ determined by
ρ̃�s ; Γ

G
∗ for the semi-graph defined in Definition 1.2, (i), with respect to

the action ρs,∗. [Thus, if Γ, hence also Γ∗, is untangled, then ΓG
∗ is

a sub-semi-graph of Γ∗ — cf. Lemma 1.4, (i).] Then the following
hold:

(i) Suppose that Γ is untangled. Then, for each G-compatible

connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ, the sub-
semi-graph ΓG

∗ ⊆ Γ∗ coincides with the disjoint union of some

[possibly empty] collection of connected components of Γ∗|ΓG
def
=

Γ∗ ×Γ Γ
G ⊆ Γ∗.

(ii) Suppose that Γ is untangled, and that G is isomorphic to
Z/lZ for some prime number l ∈ Σ. Then, for every G-

compatible connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ,
the sub-semi-graph ΓG

∗ ⊆ Γ∗ is nonempty.

(iii) Suppose that � = disc. Write (Γ̃disc)G for the sub-semi-graph
[cf. Lemma 1.4, (i)] of [the necessarily untangled semi-graph!]

Γ̃disc defined in Definition 1.2, (i), with respect to the action

ρ̃discs . Then (Γ̃disc)G is nonempty and connected. If, more-
over, we write (ΓG)0 ⊆ ΓG for the image of the composite

(Γ̃disc)G ↪→ Γ̃disc → Γ, then the resulting morphism (Γ̃disc)G →
(ΓG)0 is a [discrete] universal covering of (ΓG)0.

(iv) Suppose that � = disc (respectively, � = Σ). Then the set

VCN(Γ̃disc)G (respectively, VCN(Γ̃Σ)G
def
= lim←− VCN(Γ∗)

G)

— where, in the resp’d case, the projective limit is taken over

the G-compatible connected finite subcoverings Γ∗ → Γ of Γ̃Σ →
Γ — is nonempty.

(v) Suppose that � = Σ, that Γ is untangled, and that G is
isomorphic to Z/lZ for some prime number l ∈ Σ. Let (ΓG)0 ⊆
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ΓG be a [nonempty] connected component of ΓG such that

VCN((ΓG)0) ∩ Im
(
VCN(Γ̃Σ)G → VCN(Γ)

)
�= ∅

[cf. (iv)]. Then there exists a G-compatible connected finite

subcovering Γ∗ → Γ of Γ̃Σ → Γ such that the image of ΓG
∗ ⊆ Γ∗

in Γ coincides with (ΓG)0 ⊆ ΓG.
(vi) Suppose that � = Σ, and that Γ is untangled. Then the

sub-pro-semi-graph (Γ̃Σ)G of Γ̃Σ determined by the projective
system of sub-semi-graphs ΓG

∗ — where Γ∗ → Γ ranges over

the G-compatible connected finite subcoverings of Γ̃Σ → Γ — is
nonempty and connected. If, moreover, we write (ΓG)0 ⊆
ΓG for the image of the composite (Γ̃Σ)G ↪→ Γ̃Σ → Γ, then

the resulting morphism (Γ̃Σ)G → (ΓG)0 is a pro-Σ universal
covering of (ΓG)0.

Proof. First, we verify assertion (i). Let us first observe that one verifies
immediately that there is an inclusion of sub-semi-graphs ΓG

∗ ⊆ Γ∗|ΓG

[cf. Lemma 1.4, (i)]. Next, let us observe that it follows immediately
from Lemma 1.4, (iii), (iv), that, by replacing Γ by Γ÷, we may assume
without loss of generality that G acts without inversion on Γ [which
implies that G acts trivially on ΓG — cf. Definition 1.2, (i)]. Thus, to
complete the verification of assertion (i), it suffices to verify that the
following assertion holds:

Claim 1.6.A: Let (Γ∗|ΓG)0 ⊆ Γ∗|ΓG be a connected com-
ponent of Γ∗|ΓG such that (Γ∗|ΓG)0 ∩ ΓG

∗ �= ∅. Then
(Γ∗|ΓG)0 ⊆ ΓG

∗ .

To verify Claim 1.6.A, let us observe that since (Γ∗|ΓG)0 ∩ ΓG
∗ �= ∅, the

action ρs,∗ of G on Γ∗ stabilizes (Γ∗|ΓG)0 ⊆ Γ∗. In particular, we obtain
an action of G on (Γ∗|ΓG)0 over Γ

G. Thus, since the action of G on ΓG is
trivial, and the composite (Γ∗|ΓG)0 ↪→ Γ∗|ΓG → ΓG is a connected finite
covering of some connected component of ΓG, again by our assumption
that (Γ∗|ΓG)0∩ΓG

∗ �= ∅, we conclude that the action of G on (Γ∗|ΓG)0 is
trivial, i.e., that there is an inclusion of sub-semi-graphs (Γ∗|ΓG)0 ⊆ ΓG

∗ .
This completes the proof of Claim 1.6.A, hence also of assertion (i).
Next, we verify assertion (ii). One verifies immediately that we may

assume without loss of generality that Γ∗ = Γ. Now suppose that
ΓG = ∅. Then since G ∼= Z/lZ, it follows that the action of G on Γ is
free, which thus implies that the quotient map Γ � Γ/G is a covering
of Γ/G. In particular, ΠΣ

Γ//G is isomorphic to the pro-Σ completion of

the topological fundamental group of the semi-graph Γ/G. Thus, the
pro-Σ group ΠΣ

Γ//G is free, hence, in particular, torsion-free. But this

contradicts the existence of the section of the surjection ΠΣ
Γ//G � G

determined by s. This completes the proof of assertion (ii).
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Next, we verify the resp’d portion of assertion (iv) [i.e., the assertion

that VCN(Γ̃Σ)G �= ∅] in the case whereG is isomorphic to Z/lZ for some
prime number l ∈ Σ. Let us first observe that it follows immediately
from Lemma 1.4, (iii), (iv), that, by replacing Γ by Γ÷, we may assume
without loss of generality that Γ is untangled. Thus, the assertion that

VCN(Γ̃Σ)G �= ∅ follows immediately from assertion (ii), together with
the well-known elementary fact that a projective limit of nonempty
finite sets is nonempty. This completes the proof of the assertion that

VCN(Γ̃Σ)G �= ∅ in the case where G is isomorphic to Z/lZ for some
prime number l ∈ Σ.

Next, we verify assertion (iii). Let us first observe that since Γ̃disc

is a tree, hence untangled, it follows from Lemma 1.4, (i), that (Γ̃disc)G

is a sub-semi-graph of Γ̃disc. Next, let us observe that it follows im-
mediately from Lemma 1.4, (iv), that, by replacing Γ by Γ÷, we may
assume without loss of generality that G acts without inversion on Γ.

Thus, the assertion that (Γ̃disc)G is nonempty and connected follows im-
mediately from [SemiAn], Lemma 1.8, (ii). The remainder of assertion
(iii) follows from a similar argument to the argument applied in the
proof of assertion (i). This completes the proof of assertion (iii). In
particular, the unresp’d portion of assertion (iv) [i.e., the assertion that

VCN(Γ̃disc)G �= ∅] holds.
Next, we verify assertion (v). Let us first observe that, to verify

assertion (v), it follows immediately from Lemma 1.4, (iii), (iv), that,
by replacing Γ by Γ÷, we may assume without loss of generality that
the action ρ is an action without inversion, and that every edge of Γ
abuts to at least one vertex of Γ. In particular, since [we have assumed
that] (ΓG)0 �= ∅, it follows from Lemma 1.4, (ii), (v), that (ΓG)�0 �= ∅
[cf. Definition 1.3, (i)]. Now if ΓG is connected, then one verifies imme-

diately that the trivial covering Γ
id→ Γ satisfies the condition imposed

on “Γ∗ → Γ” in the statement of assertion (v). Thus, to complete the
verification of assertion (v), we may assume without loss of generality
that ΓG is not connected, hence [cf. Lemma 1.4, (ii)] contains at least

one vertex �∈ Vert((ΓG)0). In particular, (ΓG) �∈�0 �= ∅ [cf. Definition 1.3,
(iii)].
Write ((ΓG)�0 )

∐
→ (ΓG)�0 for the trivial Z/lZ-covering obtained by

taking a disjoint union of copies of (ΓG)�0 indexed by the elements of

Z/lZ; ((ΓG) �∈�0 )
∐
→ (ΓG) �∈�0 for the trivial Z/lZ-covering obtained by

taking a disjoint union of copies of (ΓG) �∈�0 indexed by the elements

of Z/lZ. Then the natural actions of G on ((ΓG)�0 )
∐
, ((ΓG) �∈�0 )

∐
[cf.

Lemma 1.5, (i)] determine natural actions of G × Z/lZ on ((ΓG)�0 )
∐
,

((ΓG) �∈�0 )
∐
, i.e., we have homomorphisms

ρ� : G× Z/lZ −→ Aut
(
((ΓG)�0 )

∐)
,
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ρ �∈� : G× Z/lZ −→ Aut
(
((ΓG) �∈�0 )

∐)
.

Let φ : G
∼→ Z/lZ be an isomorphism. Write

ρ�∈�φ : G× Z/lZ −→ G× Z/lZ
ρ �∈�−→ Aut

(
((ΓG) �∈�0 )

∐)
(a, b) 	→ (a, φ(a) + b)

for the composite of ρ �∈� with the homomorphism described in the
second line of the display.

Next, for e ∈ Brdg
def
= Brdg((ΓG)0 ⊆ Γ) [cf. Definition 1.3, (iv)],

write G · e ⊆ Edge((ΓG)�0 ) for the G-orbit of e. Then it is immediate
that G · e ⊆ Brdg; moreover, since G ∼= Z/lZ, it follows immediately
from Lemma 1.5, (iii), that G · e is a G-torsor. Next, let us write

((ΓG)�0 )
∐
|G·e

def
= ((ΓG)�0 )

∐
×(ΓG)�0 G · e,

((ΓG) �∈�0 )
∐
|G·e

def
= ((ΓG) �∈�0 )

∐
×(ΓG) �∈�0

G · e
[cf. Lemma 1.4, (vi)]. Then one verifies easily from the various defini-
tions involved that the following hold:

(a) The actions ρ�, ρ �∈�φ of G × Z/lZ on ((ΓG)�0 )
∐
, ((ΓG) �∈�0 )

∐

determine actions on these fibers ((ΓG)�0 )
∐
|G·e, ((Γ

G) �∈�0 )
∐
|G·e.

(b) These fibers ((ΓG)�0 )
∐
|G·e, ((Γ

G) �∈�0 )
∐
|G·e are (G×Z/lZ)-torsors

with respect to the actions of (a).

(c) There is a natural isomorphism of semi-graphs ((ΓG)�0 )
∐
|G·e

∼→
((ΓG) �∈�0 )

∐
|G·e [cf. Lemma 1.4, (vi)], which we shall use to iden-

tify these two semi-graphs.
(d) Let ebase ∈ ((ΓG)�0 )

∐
|G·e = ((ΓG) �∈�0 )

∐
|G·e [cf. (c)] be a lifting

of e ∈ Brdg. Then there is a uniquely determined [cf. (b)]
isomorphism

ιebase : ((Γ
G)�0 )

∐
|G·e

∼−→ ((ΓG) �∈�0 )
∐
|G·e

of (G× Z/lZ)-torsors [cf. (b)] that maps ebase to ebase.

Let B be a collection of elements “ebase” as in (d) such that the map
ebase 	→ e determines a bijection between B and the set of G-orbits
of Brdg. Thus, by gluing ((ΓG)�0 )

∐
to ((ΓG) �∈�0 )

∐
by means of the

collection of isomorphisms {ιebase}ebase∈B of (d) [cf. Lemma 1.4, (vi)],
we obtain a finite covering Γ∗ → Γ, together with an action of G×Z/lZ

on Γ∗ [i.e., obtained by gluing the actions ρ�, ρ �∈�φ ], such that the
morphism Γ∗ → Γ is equivariant with respect to this action of G×Z/lZ
on Γ∗ and the action of G × Z/lZ on Γ obtained by composing the
projection G × Z/lZ → G with the given action of G on Γ. Next,
let us observe that since φ is an isomorphism, and both (ΓG)0 and

(ΓG) �∈�0 contain vertices fixed by G [cf. the discussion at the beginning
of the present proof of assertion (v)], one verifies immediately — e.g.,
by considering the orbit by the action of G×{1} (⊆ G×Z/lZ) of some
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lifting to Γ∗ [which may be chosen to pass through an element of B]
of a path of minimal length between such vertices fixed by G — that
Γ∗ is connected. Moreover, it follows from the definition of Γ∗ that the
covering Γ∗ → Γ is Galois, G-compatible, and equipped with a natural

isomorphism Gal(Γ∗/Γ)
∼→ Z/lZ; in particular, Γ̃Σ → Γ factors as a

composite Γ̃Σ → Γ∗ → Γ.
Next, let us observe that, for each g ∈ G, the automorphism αg of Γ∗

obtained by considering the difference between ρs,∗(g) and the action
of g [i.e., (g, 0) ∈ G × Z/lZ] on Γ∗ defined above is an automorphism
over Γ. Moreover, it follows immediately from our assumption that

VCN((ΓG)0) ∩ Im
(
VCN(Γ̃Σ)G → VCN(Γ)

)
�= ∅

that αg fixes an element of VCN(Γ∗) that maps to VCN((ΓG)0) ⊆
VCN(Γ). But this implies that αg is trivial, i.e., that the action ρs,∗
of G coincides with the action of G (= G × {0} ⊆ G × Z/lZ) on Γ∗
defined above.

On the other hand, since φ is an isomorphism, it follows that (Γ∗)
G ⊆

Γ∗ is contained in the sub-semi-graph of Γ∗ determined by ((ΓG)�0 )
∐
.

In particular, it follows immediately from Lemma 1.5, (ii), that the
image of ΓG

∗ ⊆ Γ∗ in Γ is contained in (ΓG)0 ⊆ ΓG. Thus, it follows
immediately from assertion (i) that the image of ΓG

∗ ⊆ Γ∗ in Γ coincides
with (ΓG)0 ⊆ ΓG. This completes the proof of assertion (v).
Next, we verify assertion (vi). First, we claim that the following

assertion holds:

Claim 1.6.B: If G is isomorphic to Z/lZ for some prime
number l ∈ Σ, then assertion (vi) holds.

Indeed, it follows from the resp’d portion of assertion (iv) [i.e., the

assertion that VCN(Γ̃Σ)G �= ∅] in the case where G is isomorphic to
Z/lZ for some prime number l ∈ Σ [i.e., the case that has already

been verified!] that (Γ̃Σ)G �= ∅. On the other hand, it follows im-
mediately from assertion (v) [i.e., by allowing “Γ” to vary among the

G-compatible connected finite subcoverings of Γ̃Σ → Γ] that (Γ̃Σ)G is
connected. Thus, the final portion of assertion (vi) [in the case where
G is isomorphic to Z/lZ for some prime number l ∈ Σ] follows imme-
diately from assertion (i) [and the evident pro-Σ version of [SemiAn],
Proposition 2.5, (i)]. This completes the proof of Claim 1.6.B.
Next, we verify assertion (vi) for arbitrary finite solvable G by in-

duction on G�. Let us first observe that it follows immediately from
Lemma 1.4, (iii), (iv), that, by replacing Γ by Γ÷, we may assume with-
out loss of generality that the action ρ is an action without inversion.
Next, observe that since G is finite and solvable, there exists a normal
subgroup N ⊆ G of G such that G/N is a nontrivial finite group of
prime order. Then it follows from the induction hypothesis that if we
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write (ΓN)0 ⊆ ΓN for the [nonempty, connected!] image of the com-

posite (Γ̃Σ)N ↪→ Γ̃Σ → Γ, then the resulting morphism (Γ̃Σ)N → (ΓN)0
is a pro-Σ universal covering of (ΓN)0, and, moreover, [since the action

ρ is an action without inversion] N acts trivially on (Γ̃Σ)N . Next, let
us observe that since N is normal in G, [one verifies immediately that]

the action ρ̃Σs of G on Γ̃Σ preserves (Γ̃Σ)N ⊆ Γ̃Σ. Thus, by replacing

(Γ̃Σ → Γ, G) by ((Γ̃Σ)N → (ΓN)0, G/N) and applying Claim 1.6.B, we
conclude that assertion (vi) holds for the given G. This completes the
proof of assertion (vi).
Finally, we verify the resp’d portion of assertion (iv) [i.e., the as-

sertion that VCN(Γ̃Σ)G �= ∅]. Let us first observe that, to verify the

assertion that VCN(Γ̃Σ)G �= ∅, it follows immediately from Lemma 1.4,
(iii), (iv), that, by replacing Γ by Γ÷, we may assume without loss of

generality that Γ is untangled. Thus, the assertion that VCN(Γ̃Σ)G �= ∅
follows immediately from assertion (vi). This completes the proof of
Lemma 1.6. �

Remark 1.6.1. The conclusion of Lemma 1.6, (vi), follows for an
arbitrary [i.e., not necessarily solvable!] finite group G from [ZM], The-
orems 2.8, 2.10. That is to say, the proof given above of Lemma 1.6,
(vi), may be regarded as an alternative proof of these results of [ZM] in
the case where G is solvable. In this context, it is also perhaps of inter-
est to observe that, by considering Lemma 1.6, (vi), in the case where
Σ = Primes and “Γ” is taken to be some finite connected sub-semi-

graph of Γ̃disc that is stabilized by the action of G [where we note that

one verifies easily that Γ̃disc is a union of such sub-semi-graphs], one
obtains an alternative proof of the classical result concerning actions of
finite groups on trees quoted in the proofs of Lemma 1.6, (iii); [SemiAn],
Lemma 1.8, (ii) — hence also alternative proofs of Lemma 1.6, (iii);
[SemiAn], Lemma 1.8, (ii) — in the case where the finite group under
consideration is solvable.

Remark 1.6.2.

(i) In the situation of Lemma 1.6, if G is isomorphic to Z/lnZ
for some prime number l ∈ Σ and a positive integer n, then
the conclusion of the resp’d portion of Lemma 1.6, (iv), may
be verified by the following easier argument: Since [as is well-
known] a projective limit of nonempty finite sets is nonempty,

to verify the assertion that VCN(Γ̃Σ)G �= ∅, it suffices to verify
that VCN(Γ∗)

G �= ∅ for every G-compatible connected finite

subcovering Γ∗ → Γ of Γ̃Σ → Γ. Moreover, one verifies im-
mediately that we may assume without loss of generality that
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Γ∗ = Γ. Next, let us observe that it follows immediately from
Lemma 1.4, (iv), that, by replacing Γ by Γ÷, we may assume
without loss of generality that G acts on Γ without inversion.

Write H ⊆ G for the unique subgroup such that Q
def
= G/H

is of order l; ΓQ
def
= Γ/H for the “quotient semi-graph”, i.e.,

the semi-graph whose vertices, edges, and branches are, re-
spectively, the H-orbits of the vertices, edges, and branches of
Γ [cf. the fact that G acts on Γ without inversion]. Then one
verifies immediately that the natural morphism of semi-graphs
Γ � ΓQ determines an outer homomorphism

ΠΣ
Γ//G −→ ΠΣ

ΓQ//Q

[cf. the notation of the statement of Lemma 1.6]. Now since
ΠΣ

ΓQ
is a free pro-Σ group, hence torsion-free, it follows that

the restriction s(H) → ΠΣ
ΓQ//Q [which clearly factors through

ΠΣ
ΓQ

⊆ ΠΣ
ΓQ//Q] of the outer homomorphism ΠΣ

Γ//G → ΠΣ
ΓQ//Q

to s(H) ⊆ ΠΣ
Γ//G is trivial, hence that s determines a section

sQ : Q → ΠΣ
ΓQ//Q of the natural surjection ΠΣ

ΓQ//Q � Q. In

particular, by applying Lemma 1.6, (ii), we thus conclude that
VCN(ΓQ)

Q �= ∅. Let zQ ∈ VCN(ΓQ)
Q, z ∈ VCN(Γ) a lifting

of zQ, and g ∈ G a generator of G. Then since Q fixes zQ, it
follows that zg = zh, for some h ∈ H, hence that z is fixed by
g · h−1 ∈ G. On the other hand, since g · h−1 generates G, we
thus conclude that z is fixed by G, i.e., that VCN(Γ∗)

G �= ∅, as
desired.

(ii) The proof of Lemma 1.6, (ii), as well as the argument of
(i) above, is essentially the same as the argument applied in
[AbsCsp] to prove [AbsCsp], Lemma 2.1, (iii).

Remark 1.6.3. In the respective situations of Lemma 1.6, (iii), (vi),

the sub-semi-graph (Γ̃disc)G and the sub-pro-semi-graph (Γ̃Σ)G are nec-
essarily connected [cf. Lemma 1.6, (iii), (vi)]. On the other hand, ΓG is
not, in general, connected. This phenomenon may be seen in the follow-

ing example: Suppose that 2 ∈ Σ, and that Γ̃disc is the graph given by
the integral points of the real line R, i.e., the vertices are given by the
elements of Z ⊆ R, and the edges are given by the closed line segments
joining adjacent elements of Z. For N = 2M a positive even integer,

write ΓN for the quotient of Γ̃disc by the evident action of N ∈ Z on

Γ̃disc via translations. Thus, we have a diagram of natural covering
maps

Γ̃disc −→ ΓN −→ Γ
def
= Γ2,
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and the group G = Z/2Z acts equivariantly on this diagram via mul-
tiplication by ±1. Here, we observe that since N is even, one verifies
immediately that G acts on ΓN without inversion. Then one computes
easily that

(Γ̃disc)G = {0}, ΓG
N = MZ/NZ.

In particular, the pro-semi-graph (Γ̃Σ)G corresponds to the inverse limit

lim←− MZ/NZ,

hence consists of a single pro-vertex and no pro-edge and, in particular,
is nonempty and connected. On the other hand, each ΓG

N consists of
precisely two vertices and no edges, hence is not connected.

Definition 1.7. Let G be a profinite group and ρ : G → Aut(G) a
continuous homomorphism.

(i) We shall say that ρ is of ENN-type [where the “ENN” stands
for “extended NN”] (respectively, of EPIPSC-type [where the
“EPIPSC” stands for “extended PIPSC”]) if there exists a nor-
mal closed subgroup IG ⊆ G of G such that, for every open

subgroup J ⊆ IG of IG, the composite J ↪→ G
ρ→ Aut(G)

factors as a composite J � JΣ-ab-free → Aut(G) [cf. the dis-
cussion entitled “Groups” in §0], where the second arrow is of
NN-type [cf. [NodNon], Definition 2.4, (iii)] (respectively, of
PIPSC-type [cf. [CbTpIII], Definition 1.3]). In this situation,
we shall refer to IG as a conducting subgroup. Suppose that ρ
is of ENN-type for some conducting subgroup IG ⊆ G. Then
we shall say that ρ is verticially quasi-split if there exists an
open subgroup H ⊆ G that acts as the identity [i.e., relative
to the action induced by ρ] on the underlying semi-graph G of
G and, moreover, for every v ∈ Vert(G), satisfies the following
condition: the extension of profinite groups [cf. the discussion
entitled “Topological groups” in [CbTpI], §0]

1 −→ Πv −→ Πv

out
� H −→ H −→ 1

— where Πv ⊆ ΠG is a verticial subgroup associated to v ∈
Vert(G) — associated to the outer action of H on Πv de-
termined by ρ [cf. [CmbGC], Proposition 1.2, (ii); [CbTpI],

Lemma 2.12] admits a splitting sv : H → Πv

out
� H such that

the image of the restriction of sv to IG∩H commutes with Πv.
(ii) Let l ∈ Σ. Then we shall say that ρ is l-cyclotomically full if

the image of the composite G
ρ→ Aut(G) χG→ (ẐΣ)× � Z×

l [cf.
[CbTpI], Definition 3.8, (ii)] is open.
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Remark 1.7.1. It follows immediately from [CbTpIII], Remark 1.6.2,
that the following implication holds:

EPIPSC-type =⇒ ENN-type.

Lemma 1.8 (Outer representations induced on pro-l comple-
tions). Let G be a profinite group and ρ : G → Aut(G) a continu-
ous homomorphism of ENN-type (respectively, of EPIPSC-type)
for a conducting subgroup IG ⊆ G [cf. Definition 1.7, (i)]. For
l ∈ Σ, write G{l} for the semi-graph of anabelioids of pro-{l} PSC-type
obtained by forming the pro-l completion of G [cf. [SemiAn], Defini-

tion 2.9, (ii)]. Then the composite G
ρ→ Aut(G) → Aut(G{l}) is of

ENN-type (respectively, of EPIPSC-type) for some conducting
subgroup ⊆ G, which may be taken to be a normal open subgroup of
IG.

Proof. This follows immediately from the various definitions involved
[cf. also [CbTpI], Theorem 4.8, (iv); [CbTpI], Corollary 5.9, (ii), (iii)].

�

Definition 1.9. Let z ∈ VCN(G). If z ∈ Vert(G) (respectively, z ∈
Edge(G)), then we shall refer to a verticial (respectively, an edge-like)
subgroup of Πtp

G associated to z [cf. [SemiAn], Theorem 3.7, (i), (iii)]

as a VCN-subgroup of Πtp
G associated to z. For z̃ ∈ VCN(G̃tp), we shall

also speak of VCN-subgroups of Πtp
G associated to z̃.

Definition 1.10.

(i) Let Γ be a semi-graph and v ∈ Vert(Γ). Then we shall write
Vδ≤1(v) ⊆ Vert(Γ) for the subset consisting of w ∈ Vert(Γ)
such that either w = v or N (v) ∩ N (w) �= ∅. Also, we shall

write Star(v)
def
= Vδ≤1(v) � E(v) ⊆ VCN(Γ).

(ii) Let v ∈ Vert(G). Then we shall write Vδ≤1(v) ⊆ Vert(G),
Star(v) ⊆ VCN(G) for the respective subsets of (i) applied to
the underlying semi-graph of G.

(iii) Let ṽ ∈ Vert(G̃). Then we shall write Vδ≤1(ṽ) ⊆ Vert(G̃),
Star(ṽ) ⊆ VCN(G̃) for the respective projective limits of the
subsets of (ii), i.e., where the constructions of these subsets
are applied to the images of ṽ in the connected finite etale

subcoverings of G̃ → G.
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Lemma 1.11 (VCN-subgroups and sections). Let G be a profinite

group, ρ : G → Aut(G) a continuous homomorphism, z̃ ∈ VCN(G̃),
z̃tp ∈ VCN(G̃tp), Πz̃ ⊆ ΠG a VCN-subgroup of ΠG associated to z̃ ∈
VCN(G̃), and Πz̃tp ⊆ Πtp

G a VCN-subgroup of Πtp
G associated to z̃tp

[cf. Definition 1.9]. Write ΠG
def
= ΠG

out
� G, Πtp

G
def
= Πtp

G
out
� G [cf. the

discussion entitled “Topological groups” in [CbTpI], §0]. Thus, we have
a natural commutative diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1

— where the horizontal sequences are exact; the vertical arrows are

outer injections; Πtp
G acts naturally on G̃tp; ΠG acts naturally on G̃.

Then the following hold:

(i) It holds that

Πz̃ = NΠG
(Πz̃) ∩ ΠG = CΠG

(Πz̃) ∩ ΠG,

Dz̃
def
= NΠG

(Πz̃) = CΠG
(Πz̃) = NΠG

(Dz̃) = CΠG
(Dz̃),

Πz̃tp = NΠtp
G
(Πz̃tp) ∩ Πtp

G = CΠtp
G
(Πz̃tp) ∩ Πtp

G ,

Dz̃tp
def
= NΠtp

G
(Πz̃tp) = CΠtp

G
(Πz̃tp) = NΠtp

G
(Dz̃tp) = CΠtp

G
(Dz̃tp).

(ii) Suppose that ρ is of ENN-type for a conducting subgroup
IG ⊆ G [cf. Definition 1.7, (i)]. Let S be a nonempty subset

of VCN(G̃) and s : G → ΠG a section of the surjection ΠG �
G such that, for each ỹ ∈ S, it holds that s(IG) ≺ Dỹ [cf.
the discussion entitled “Groups” in §0]. Then there exists an

element ṽ ∈ Vert(G̃) such that S ⊆ Star(ṽ) [cf. Definition 1.10,
(iii)].

(iii) Suppose that ρ is of ENN-type for a conducting subgroup
IG ⊆ G. Let s : G→ ΠG be a section of the surjection ΠG � G
such that s(IG) ≺ Dz̃ [cf. the discussion entitled ”Groups” in

§0]. Write Gs
def
= CΠG

(s(IG)). Then there exists an element

z̃′ ∈ VCN(G̃) such that s(G) ⊆ Gs ⊆ Dz̃′.
(iv) Suppose that ρ is of ENN-type for a conducting subgroup

IG ⊆ G. Let s : G→ Πtp
G be a section of the surjection Πtp

G � G
such that s(IG) ≺ Dz̃tp [cf. the discussion entitled ”Groups” in

§0]. Write Gs
def
= CΠtp

G
(s(IG)). Then there exists an element

(z̃′)tp ∈ VCN(G̃tp) such that s(G) ⊆ Gs ⊆ D(z̃′)tp. In par-

ticular, Gs is contained in a profinite subgroup of Πtp
G [cf.

(i)].
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Proof. First, we verify assertion (i). The two equalities of the first
(respectively, third) line of the display and the first “=” of the sec-
ond (respectively, fourth) line of the display follow immediately from
[CmbGC], Proposition 1.2, (i), (ii) (respectively, [CmbGC], Proposi-
tion 1.2, (i), (ii), together with the injection reviewed at the beginning
of the present §1). Thus, the second and third “=” of the second
(respectively, fourth) line of the display follow immediately from the
chain of inclusions

Dz̃ ⊆ NΠG
(Dz̃) ⊆ CΠG

(Dz̃) ⊆ CΠG
(Dz̃ ∩ ΠG) = CΠG

(Πz̃) = Dz̃

(respectively,

Dz̃tp ⊆ NΠtp
G
(Dz̃tp) ⊆ CΠtp

G
(Dz̃tp) ⊆ CΠtp

G
(Dz̃tp∩Πtp

G ) = CΠtp
G
(Πz̃tp) = Dz̃tp)

— where the third “⊆” follows immediately from [CbTpII], Lemma
3.9, (i) (respectively, the [easily verified] tempered version of [CbTpII],
Lemma 3.9, (i)). This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us first observe that it follows

from the definition of the term “ENN-type” that the restriction of ρ to
IG ⊆ G factors through the quotient IG � IΣ-ab-free

G [cf. the discussion

entitled “Groups” in §0]. Write ΠIG
def
= ΠG

out
� IG and ΠIΣ-ab-free

G

def
=

ΠG
out
� IΣ-ab-free

G . Thus, we have a commutative diagram

1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1∥∥∥ 	⏐⏐ 	⏐⏐
1 −−−→ ΠG −−−→ ΠIG −−−→ IG −−−→ 1∥∥∥ ⏐⏐� ⏐⏐�
1 −−−→ ΠG −−−→ ΠIΣ-ab-free

G
−−−→ IΣ-ab-free

G −−−→ 1

— where the horizontal sequences are exact, the upper vertical arrows
are injective, the lower vertical arrows are surjective, and the two right-
hand squares are cartesian. Next, let us observe that we may assume

without loss of generality that S is equal to the set of all ỹ ∈ VCN(G̃)
such that s(IG) ≺ Dỹ. Now since s(IG) ≺ Dỹ = CΠG

(Πỹ) [cf. assertion
(i)] for every ỹ ∈ S, it holds that, for each ỹ ∈ S, some open subgroup

of the image J ⊆ ΠIΣ-ab-free
G

of IG
s→ ΠIG � ΠIΣ-ab-free

G
is contained in

CΠ
IΣ-ab-free
G

(Πỹ). In particular, it follows from [NodNon], Propositions

3.8, (i); 3.9, (i), (ii), (iii), that

• every pair of edges ∈ S abut to a common vertex ∈ S;
• the distance between any two vertices ∈ S is ≤ 2 [cf. Defini-
tion 1.1, (iii)], and the edges “e1, . . . , en” and vertices “v0, . . . , vn”
of loc. cit. may be taken to be ∈ S;

• if ẽ ∈ S is an edge, then V(ẽ) ⊆ S.
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It is now a matter of elementary combinatorial graph theory [cf. also
[NodNon], Lemma 1.8] to conclude that S ⊆ Star(ṽ) for some ṽ ∈
Vert(G̃), as desired. This completes the proof of assertion (ii).

Next, we verify assertion (iii). Since s(IG) ≺ Dz̃, the action of

some open subgroup of IG on G̃ determined by s|IG fixes z̃ ∈ VCN(G̃).
Thus, it follows from the definition of Gs that, if, for γ ∈ Gs, we write

z̃γ ∈ VCN(G̃) for the image of z̃ by the action of γ ∈ Gs, then the action

of some open subgroup of IG on G̃ fixes z̃γ ∈ VCN(G̃), i.e., s(IG) ≺ Dz̃γ

for every γ ∈ Gs.

Now suppose that z̃ ∈ Edge(G̃). Then it follows from assertion (ii)

that there exists a vertex ṽ ∈ Vert(G̃) such that { z̃γ | γ ∈ Gs } ⊆ E(ṽ).
Now if { z̃γ | γ ∈ Gs }� = 1, then it is immediate that Gs ⊆ Dz̃. On the
other hand, if { z̃γ | γ ∈ Gs }� ≥ 2, then one verifies immediately from
the various definitions involved [cf. also [NodNon], Lemma 1.8] that the

action of Gs fixes ṽ ∈ Vert(G̃), which thus implies that Gs ⊆ Dṽ. This

completes the proof of assertion (iii) in the case where z̃ ∈ Edge(G̃).
Next, suppose that z̃ ∈ Vert(G̃). Then it follows from assertion (ii)

that the set Sδ of vertices ṽ ∈ Vert(G̃) such that

• Sz̃
def
= { z̃γ | γ ∈ Gs } ⊆ Vδ≤1(ṽ);

• any edge ∈ Edge(G̃) that abuts to two distinct elements of
Sz̃ [hence is fixed by the action, determined by s|IG , of some
open subgroup of IG — cf. [NodNon], Proposition 3.9, (ii)]
necessarily abuts to ṽ

is nonempty. If the action of Gs fixes some ỹ ∈ VCN(G̃), then Gs ⊆ Dỹ.
Thus, we may assume without loss of generality that the action of Gs

does not fix any element of VCN(G̃). In particular, it follows that the
[nonempty!] sets Sz̃ and Sδ —both of which are clearly preserved by the
action of Gs — are of cardinality ≥ 2. In a similar vein, Sδ \ (Sδ∩Sz̃) is
either empty or of cardinality ≥ 2. Moreover, the latter case contradicts
[NodNon], Lemma 1.8. Thus, we conclude that Sδ ⊆ Sz̃, which, by the
definition of Sz̃ and Sδ, implies that Sδ = Sz̃, i.e., that, for any two
distinct z̃1, z̃2 ∈ Sz̃, there exists a [unique, by [NodNon], Lemma 1.8]

ẽ ∈ Edge(G̃) such that V(ẽ) = {z̃1, z̃2}. But, in light of the definition

of Sδ, this implies that S�
z̃ = 2, and hence that Edge(G̃) contains an

element fixed by the action of Gs — a contradiction! This completes

the proof of assertion (iii) in the case where z̃ ∈ Vert(G̃), hence also
of assertion (iii). Assertion (iv) follows immediately from a similar
argument to the argument applied in the proof of assertion (iii). This
completes the proof of Lemma 1.11. �
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Lemma 1.12 (Triviality via passage to abelianizations). Let G
and J be profinite groups and φ : J → G a continuous homomorphism.
Then the following hold:

(i) Let γ ∈ G be such that, for every open subgroup H ⊆ G of G
that contains γ, the image of γ in Hab is trivial. Then γ is
trivial.

(ii) Suppose that, for every open subgroup H ⊆ G of G, the com-

posite φ−1(H)
φ→ H � Hab is trivial. Then φ is trivial.

Proof. First, we verify assertion (i). Assume that γ is nontrivial. Then
it is immediate that there exists a normal open subgroup N ⊆ G
of G such that γ �∈ N . Write H ⊆ G for the closed subgroup of
G topologically generated by N and γ. Then the image of γ in the
abelian quotient H � H/N is nontrivial. This completes the proof
of assertion (i). Assertion (ii) follows immediately from assertion (i).
This completes the proof of Lemma 1.12. �

Theorem 1.13 (The combinatorial section conjecture for outer
representations of ENN-type). Let Σ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, G a profi-
nite group, and ρ : G→ Aut(G) a continuous homomorphism that is of
ENN-type for a conducting subgroup IG ⊆ G [cf. Definition 1.7,
(i)]. Write ΠG for the [pro-Σ] fundamental group of G and Πtp

G for the
tempered fundamental group of G [cf. [SemiAn], Example 2.10; the dis-
cussion preceding [SemiAn], Proposition 3.6]. [Thus, we have a natural
outer injection Πtp

G ↪→ ΠG — cf. [CbTpIII], Lemma 3.2, (i); the proof of

[CbTpIII], Proposition 3.3, (i), (ii).] Write ΠG
def
= ΠG

out
� G [cf. the dis-

cussion entitled “Topological groups” in [CbTpI], §0]; Πtp
G

def
= Πtp

G
out
� G;

G̃ → G, G̃tp → G for the universal pro-Σ and pro-tempered coverings of
G corresponding to ΠG, Π

tp
G ; VCN(−) for the set of vertices, cusps, and

nodes of the underlying [pro-]semi-graph of a [pro-]semi-graph of an-
abelioids [cf. Definition 1.1, (i)]. Thus, we have a natural commutative
diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1

— where the horizontal sequences are exact; the vertical arrows are

outer injections; Πtp
G acts naturally on G̃tp; ΠG acts naturally on G̃.

Then the following hold:

(i) Suppose that ρ is l-cyclotomically full [cf. Definition 1.7,
(ii)] for some l ∈ Σ. Let s : G→ ΠG be a continuous section of
the natural surjection ΠG � G. Then, relative to the action of
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ΠG on VCN(G̃) via conjugation of VCN-subgroups, the image

of s stabilizes some element of VCN(G̃).
(ii) Let s : G → Πtp

G be a continuous section of the natural surjec-

tion Πtp
G � G. Then, relative to the action of Πtp

G on VCN(G̃tp)
via conjugation of VCN-subgroups [cf. Definition 1.9], the im-

age of s stabilizes some element of VCN(G̃tp).
(iii) Write Sect(ΠG/G) for the set of ΠG-conjugacy classes of con-

tinuous sections of the natural surjective homomorphism ΠG �
G and Sect(Πtp

G /G) for the set of Πtp
G -conjugacy classes of

continuous sections of the natural surjective homomorphism
Πtp

G � G. Then the natural map

Sect(Πtp
G /G) −→ Sect(ΠG/G)

is injective. If, moreover, ρ is l-cyclotomically full for
some l ∈ Σ, then this map is bijective.

Proof. First, we verify assertion (i). Let us first observe that by replac-
ing IG by a suitable open subgroup of IG and G by the pro-l completion
of the finite étale covering of G determined by a varying normal open
subgroup H ⊆ ΠG such that s(G) ⊆ H [cf. Lemma 1.8; [CbTpIII],
Lemma 1.5], it follows immediately from the well-known fact that a
projective limit of nonempty finite sets is nonempty that we may as-
sume without loss of generality that Σ = {l}.

Next, let us observe that we may assume without loss of generality
that G has at least one node. In particular, it follows immediately
from Lemma 1.11, (iii), that, to verify assertion (i), by replacing ΠG

by a suitable open subgroup of ΠG, we may assume without loss of
generality — i.e., by arguing as in the discussion entitled “Curves”
in [AbsTpII], §0 — that the pro-l completion ΠG of the topological
fundamental group of the underlying semi-graph G of G is a free pro-l
group of rank ≥ 2, hence, in particular, center-free.
Then we claim that the following assertion holds:

Claim 1.13.A: For every connected finite étale Galois

subcovering H → G of G̃ → G that determines a nor-
mal open subgroup of ΠG, the action of IG on H, via
s, fixes an element of VCN(H).

To verify Claim 1.13.A, let us observe that, by replacing H by G [cf.
[CbTpIII], Lemma 1.5], we may assume without loss of generality that
H = G. Next, let us observe that since the underlying semi-graph G

of G is finite, the continuous action of G on G factors through a finite

quotient G� Q, i.e., by a normal open subgroup of G. Write ΠG//Q
def
=

ΠG

out
� Q [i.e., notation which is well-defined since ΠG is center-free

— cf. the discussion entitled “Topological groups” in [CbTpI], §0; the
notational conventions of Lemma 1.6, in the case where “Σ” is taken
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to be {l}]. Thus, we obtain a commutative diagram

1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −−−→ ΠG −−−→ ΠG//Q −−−→ Q −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. Write IG � IQ for the [finite] quotient of IG determined by

the quotient G � Q, NG
def
= Ker(G � Q), and NI

def
= Ker(IG � IQ).

Now let us observe that

(a) since Q is finite, it is immediate that NG, NI are open in G,
IG, respectively, and, moreover,

(b) it follows from the definition of the term “ENN-type” that,
by replacing G � Q by a suitable quotient of Q if necessary,
we may assume without loss of generality that the quotient

IG � IQ factors through the quotient IG � I
{l}-ab-free
G [cf. the

discussion entitled “Groups” in §0], hence is cyclic of order a
power of l.

Next, let us observe that the composite NG ↪→ G
s→ ΠG � ΠG//Q

determines a commutative diagram

NI ↪−→ NG

|
↓

|
↓

ΠG == ΠG

— where the upper horizontal arrow is the natural inclusion. Now we
claim that the following assertion holds:

Claim 1.13.B: The left-hand vertical arrow NI → ΠG

of the above diagram is the trivial homomorphism.

Indeed, let H ⊆ ΠG be an open subgroup and write NI,H ⊆ NI and
NG,H ⊆ NG for the open subgroups obtained by forming the inverse
image of H ⊆ ΠG via the vertical arrows of the above commutative
diagram. Thus, NG,H normalizes NI,H ; the action of NG,H on H by
conjugation induces the trivial action of NG,H on Hab. Next, let us
observe that since Hab is a free Zl-module, the left-hand vertical arrow

under consideration determines a homomorphism N
{l}-ab-free
I,H → Hab of

free Zl-modules of finite rank [cf. Definition 1.7, (i)], which is NG,H-
equivariant [with respect to the actions of NG,H by conjugation]. On
the other hand, since the action of NG,H on Hab is trivial, the NG,H-

equivariant homomorphism N
{l}-ab-free
I,H → Hab factors through a quo-

tient of N
{l}-ab-free
I,H on which NG,H acts trivially. Thus, since ρ is l-

cyclotomically full, and NG,H acts on N
{l}-ab-free
I,H via the cyclotomic

character [cf. Definition 1.7, (i); [CbTpI], Lemma 5.2, (ii)], we con-

clude that the NG,H-equivariant homomorphism N
{l}-ab-free
I,H → Hab is
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trivial. In particular, Claim 1.13.B follows from Lemma 1.12, (ii). This
completes the proof of Claim 1.13.B.

Next, let us observe that it follows immediately from Claim 1.13.B
that the section s determines a section of the natural surjection

ΠG//IQ
def
= ΠG//Q ×Q IQ

pr2� IQ.

Thus, it follows immediately from the resp’d portion of Lemma 1.6,
(iv), together with the observation (b) discussed above [cf. also Re-
mark 1.13.1 below], that Claim 1.13.A holds. This completes the proof
of Claim 1.13.A.
Now by allowing the subcovering H in Claim 1.13.A to vary, we

conclude immediately [from the well-known fact that a projective limit
of nonempty finite sets is nonempty] that s(IG) stabilizes some element

of VCN(G̃). Thus, it follows from Lemma 1.11, (iii), that the image

s(G) stabilizes some element of VCN(G̃). This completes the proof of
assertion (i).
Assertion (ii) follows, by applying [NodNon], Proposition 3.9, (i),

from a similar argument to the argument applied to prove [SemiAn],
Theorems 3.7, 5.4. That is to say, instead of considering “subjoints”
[i.e., paths of length 2] as in the proof of [SemiAn], Theorem 3.7, the
content of [NodNon], Proposition 3.9, (i), requires us to consider paths
of length 3. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let s, t : G → Πtp
G be sections of

the surjection Πtp
G � G such that there exists an element γ ∈ ΠG such

that the composite ŝ : G
s→ Πtp

G ↪→ ΠG is the conjugate by γ ∈ ΠG of

the composite t̂ : G
t→ Πtp

G ↪→ ΠG. Thus, it follows from assertion (ii)

[applied to both s and t] that there exist elements ỹ, z̃ ∈ VCN(G̃tp)

such that if we write z̃γ ∈ VCN(G̃) for the image of z̃ by the action
of γ, then ŝ stabilizes both ỹ and z̃γ. In particular, we conclude from
Lemma 1.11, (ii), that the distance between ỹ and z̃γ is finite, hence

that, for each subcovering H → G of G̃tp → G that arises from an
open subgroup of Πtp

G , the distance between the images of z̃ and z̃γ in

H is finite, which implies that γ ∈ Πtp
G . This completes the proof of

the injectivity portion of assertion (iii). Since [one verifies immediately

that] every element of VCN(G̃) lies in the ΠG-orbit of an element of

VCN(G̃tp), the final portion of assertion (iii) follows immediately from
assertion (i). This completes the proof of Theorem 1.13. �

Remark 1.13.1. We observe in passing, with regard to the application
of Lemma 1.6, (iv), in the proof of Theorem 1.13, (i), that, in fact,
Lemma 1.6, (iv), is only applied in the case where the group “G” of
Lemma 1.6 is cyclic and of order a power of l. That is to say, we only
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apply Lemma 1.6, (iv), in the case that, as discussed in Remark 1.6.2,
(i), admits a relatively simple proof.

Corollary 1.14 (A combinatorial version of the Grothendieck
conjecture for outer representations of ENN-type). Let Σ be a
nonempty set of prime numbers; G, H semi-graphs of anabelioids of
pro-Σ PSC-type; GG, GH profinite groups; β : GG

∼→ GH a continu-
ous isomorphism; ρG : GG → Aut(G), ρH : GH → Aut(H) continuous
homomorphisms that are of ENN-type for conducting subgroups
IGG ⊆ GG, IGH ⊆ GH [cf. Definition 1.7, (i)] such that β(IGG) = IGH;
l ∈ Σ a prime number such that ρG and ρH are l-cyclotomically full
[cf. Definition 1.7, (ii)]. Suppose further that ρG is verticially quasi-
split [cf. Definition 1.7, (i)]. Write ΠG, ΠH for the [pro-Σ] funda-

mental groups of G, H, respectively. Let α : ΠG
∼→ ΠH be a continuous

isomorphism such that the diagram

GG
ρG−→ Aut(G) ↪−→ Out(ΠG)

β
|
↓

|
↓

GH
ρH−→ Aut(H) ↪−→ Out(ΠH)

— where the right-hand vertical arrow is the isomorphism obtained by
conjugating by α — commutes. Then α is graphic [cf. [CmbGC],
Definition 1.4, (i)].

Proof. First, let us observe that by [CmbGC], Corollary 2.7, (i), it
follows from our assumption that ρG and ρH are l-cyclotomically full
that α : ΠG

∼→ ΠH is group-theoretically cuspidal. Thus, by applying
[CmbGC], Proposition 1.5, (ii); [NodNon], Lemma 1.14, we conclude
that it suffices to verify that α is group-theoretically verticial under
the additional assumption that G and H are noncuspidal. Write ΠGG ,
ΠGH for the profinite groups “ΠG” [cf. Theorem 1.13] associated to
ρG, ρH. Then it follows immediately from our assumption that ρG is
verticially quasi-split that we may assume, after possibly replacing GG
and GH by corresponding open subgroups, that there exists a section
sG : GG → ΠGG such that the image of the restriction of sG to IGG com-
mutes with some verticial subgroup of ΠG. In particular, sG satisfies
the conditions imposed on the section “s : G → ΠG” in Lemma 1.11,
(ii), for some nonempty subset “S”. Moreover, it follows from The-

orem 1.13, (i), that the isomorphism ΠGG
∼→ ΠGH determined by α

and β maps sG to a section sH : GH → ΠGH that is contained in the
normalizer in ΠGH of a VCN-subgroup of ΠH. In particular, after
possibly replacing GG and GH by corresponding open subgroups, we
may assume [cf. [CmbGC], Proposition 1.2, (ii); [NodNon], Remark
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2.7.1] that the image of the restriction of sH to IGH commutes with
some nontrivial verticial element of ΠH [cf. [CbTpII], Definition 1.1].
Thus, by restricting these sections sG, sH to the respective conducting
subgroups and forming appropriate centralizers [cf. [NodNon], Lemma
3.6, (i), applied to the restriction of sG to IGG ], we conclude from the
assumption that β is compatible with the respective conducting sub-
groups that α : ΠG

∼→ ΠH maps some nontrivial verticial element of
ΠG to a nontrivial verticial element of ΠH. In particular, it follows
from the implication (3) ⇒ (1) of [CbTpII], Theorem 1.9, (i), that α
is group-theoretically verticial, as desired. �

Remark 1.14.1. It is not difficult to verify that the assumption in
the statement of Corollary 1.14 that β(IGG) = IGH cannot be omitted.
Indeed, if one omits this assumption, then a counterexample to the
graphicity asserted in Corollary 1.14 may be obtained as follows: Let J
be a semi-graph of anabelioids of pro-Σ PSC-type and eG, eH distinct
nodes of J . Write G (respectively, H) for the semi-graph of anabe-
lioids of pro-Σ PSC-type J�Node(J )\{eG} (respectively, J�Node(J )\{eH})
obtained by deforming the nodes of J that are �= eG (respectively,
�= eH) [cf. [CbTpI], Definition 2.8]; IGG (respectively, IGH) for the [nec-
essarily normal— cf. [CbTpI], Theorem 4.8, (i), (v)] closed subgroup of

Aut|{eG ,eH}|(J ) [cf. [CbTpI], Definition 2.6, (i)] generated by the profi-
nite Dehn twists that arise from the direct summand of the direct sum
decomposition in the display of [CbTpI], Theorem 4.8, (iv), labeled
by eG (respectively, eH). Next, let GG = GH be a closed subgroup of

Aut|{eG ,eH}|(J ) such that

• GG = GH contains both IGG and IGH ,
• the natural inclusion GG = GH ↪→ Aut(J ) is l-cyclotomically
full for some l ∈ Σ, and, moreover,

• if we write ρG (respectively, ρH) for the continuous injection
GG ↪→ Aut(G) (respectively, GH ↪→ Aut(H)) obtained by
forming the composite of the natural inclusion GG = GH ↪→
Aut|{eG ,eH}|(J ) and the injection Aut|{eG ,eH}|(J ) ↪→ Aut(G)
(respectively, Aut|{eG ,eH}|(J ) ↪→ Aut(H)) [cf. [CbTpI], Propo-
sition 2.9, (ii)], then ρG is verticially quasi-split.

[Note that one verifies easily the existence of such a closed subgroup

of Aut|{eG ,eH}|(J ) by considering, for instance, a homomorphism GG =
GH ↪→ Aut(J ) of EPIPSC-type that arises from a suitable stable log
curve — cf. also Remark 1.7.1; [CbTpI], Lemma 5.4, (ii); [CbTpI],
Proposition 5.6, (ii).] Then if one takes the “α” of Corollary 1.14
to be the outer isomorphism determined by the specialization outer
isomorphisms ΦJ�Node(J )\{eG}, ΦJ�Node(J )\{eH} [cf. [CbTpI], Definition
2.10] and the “β” of Corollary 1.14 to be the identity isomorphism, then
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one verifies immediately from [CbTpI], Corollary 3.9, (i), and [CbTpI],
Corollary 5.9, (iii), that one obtains a counterexample as desired.

Let R be a complete discrete valuation ring whose residue character-
istic we denote by p [so p may be zero]; K a separable closure of the
field of fractions K of R;

X log

a stable log curve [cf. the discussion entitled “Curves” in [CbTpI],
§0] over the log regular log scheme Spec(R)log obtained by equipping
Spec(R) with the log structure determined by the maximal ideal mR ⊆
R of R. Suppose, for simplicity, that X log is split, i.e., that the nat-
ural action of Gal(K/K) on the dual semi-graph ΓXlog associated to

the geometric special fiber of X log is trivial. Write X log def
= X log ×R K;

Vert(X log) (respectively, Cusp(X log); Node(X log)) for the set of ver-
tices (respectively, open edges; closed edges) of ΓXlog , i.e., the set
of connected components of the complement of the cusps and nodes
(respectively, the set of cusps; the set of nodes) of the special fiber of
X log;

VCN(X log)
def
= Vert(X log) � Cusp(X log) � Node(X log).

Before proceeding, we recall that

to each element z ∈ VCN(X log), one may associate, in
a way that is functorial with respect to arbitrary auto-
morphisms of the log scheme X log, a discrete valuation
that dominates R on the residue field of some point of
X, which is closed if and only if z is a cusp.

Indeed, this is immediate if z is a vertex, since a vertex corresponds to
a prime of height 1 of X . This is also immediate if z is a cusp, since
the residue field of the closed point of X that corresponds to z is finite
over [the complete discrete valuation field] K, which implies that the
discrete valuation of K extends uniquely to a discrete valuation on the
residue field of a cusp. Now suppose that z is a node that is locally
defined by an equation of the form s1s2 − a, for some a ∈ mR [cf.,
e.g., the discussion of [CbTpI], Definition 5.3, (ii)]. By descent, we
may assume without loss of generality that a admits a square root b in
R. Then one associates to z the discrete valuation determined by the
exceptional divisor of the blow-up of X at the locus (s1, s2, b). [One
verifies immediately that this construction is compatible with arbitrary
automorphisms of X log.]

Corollary 1.15 (Fixed points associated to Galois sections). Let
Σ be a set of prime numbers; Σ† ⊆ Σ a subset; l ∈ Σ†; R a complete
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discrete valuation ring of residue characteristic p �∈ Σ† [so p may be
zero]; K a separable closure of the field of fractions K of R;

X log

a stable log curve [cf. the discussion entitled “Curves” in [CbTpI],
§0] over the log regular log scheme Spec(R)log obtained by equipping
Spec(R) with the log structure determined by the maximal ideal of R.

Write GK
def
= Gal(K/K) for the absolute Galois group of K; IK ⊆ GK

for the inertia subgroup of GK; X
log def

= X log ×RK; X log

K

def
= X log ×R

K;

ΔXlog

for the pro-Σ log fundamental group of X log

K
[i.e., the maximal pro-Σ

quotient of the log fundamental group of X log

K
];

ΠX log

for the geometrically pro-Σ log fundamental group of X log [i.e., the
quotient of the log fundamental group of X log by the kernel of the natural
surjection from the log fundamental group of X log

K
onto ΔXlog ]. Thus,

we have a natural exact sequence of profinite groups

1 −→ ΔXlog −→ ΠXlog −→ GK −→ 1.

Write X̃ log → X log for the profinite log étale covering of X log corre-
sponding to ΠXlog . If Y log → X log is a finite connected subcovering of

X̃ log → X log that admits a stable model Y log over the normalization RY

of R in Y , then let us write ΓY log for the dual semi-graph determined
by the geometric special fiber of Y log over RY ; Vert(Y

log) (respectively,
Cusp(Y log); Node(Y log)) for the set of vertices (respectively, open edges;
closed edges) of ΓY log , i.e., the set of connected components of the com-
plement of the cusps and nodes (respectively, the set of cusps; the set
of nodes) of the geometric special fiber of Y log over RY ;

Edge(Y log)
def
= Cusp(Y log) � Node(Y log);

VCN(Y log)
def
= Vert(Y log) � Edge(Y log);

VCN(X̃ log)
def
= lim←− VCN(Y log)

— where the projective limit is over all finite connected subcoverings

Y log → X log of X̃ log → X log as above, and, moreover, for each finite

connected subcovering Y log
1 → X log of X̃ log → X log that admits a stable

model Y log
1 over the normalization of R in Y1, the transition map for

a finite connected subcovering Y log
2 → Y log

1 of X̃ log → Y log
1 that admits

a stable model Y log
2 over the normalization of R in Y2 is defined, for

z ∈ VCN(Y log
2 ), as follows:
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• If the connected component/cusp/node corresponding to z maps,

via the extension Y log
2 → Y log

1 of Y log
2 → Y log

1 [cf., e.g., [ExtFam],
Theorem C], to a cusp or node of the geometric special fiber of

Y1, then the image of z ∈ VCN(Y log
2 ) in VCN(Y log

1 ) is defined

to be the element of Edge(Y log
1 ) corresponding to the cusp or

node.
• If the generic point of the connected component/cusp/node cor-

responding to z maps, via the extension Y log
2 → Y log

1 of Y log
2 →

Y log
1 , to a point of the geometric special fiber of Y1 that is

neither a cusp nor node, then the image of z ∈ VCN(Y log
2 )

in VCN(Y log
1 ) is defined to be the element of Vert(Y log

1 ) corre-
sponding to the connected component on which the point lies.

If z̃ ∈ VCN(X̃ log), and Y log → X log is a finite connected subcovering

of X̃ log → X log that admits a stable model Y log over the normalization
of R in Y , then let us write z̃(Y log) ∈ VCN(Y log) for the element of
VCN(Y log) determined by z̃. Let H ⊆ GK be a closed subgroup such
that the image of

IH
def
= H ∩ IK ⊆ IK

via the natural surjection IK � IΣ
†

K to the pro-Σ† completion IΣ
†

K of IK
is an open subgroup of IΣ

†
K and

s : H −→ ΠXlog

a section of the restriction to H ⊆ GK of the above exact sequence
1 → ΔXlog → ΠXlog → GK → 1. Then the following hold:

(i) If we write Δ†
X log for the maximal pro-Σ† quotient of ΔXlog and

regard, via the specialization outer isomorphism with respect
to X log, the pro-Σ† group Δ†

Xlog as the [pro-Σ†] fundamental

group of the semi-graph of anabelioids of pro-Σ† PSC-type de-
termined by the geometric special fiber of the stable model X log

[cf. [CmbGC], Example 2.5], then the natural outer Galois ac-
tion

H −→ Out(Δ†
Xlog)

determined by the above exact sequence is of EPIPSC-type
for the conducting subgroup IH ⊆ H [cf. Definition 1.7,
(i)]. If, moreover, H is l-cyclotomically full, i.e., the image
of H ⊆ GK via the l-adic cyclotomic character on GK is open,
then the above outer Galois action is l-cyclotomically full
[cf. Definition 1.7, (ii)].

(ii) Suppose that the residue field of R is countable. Let z̃ ∈
VCN(X̃ log) and S = {Y log → X log} a cofinal system consisting

of finite Galois subcoverings Y log → X log of X̃ log → X log such
that Y log admits a split stable model over the normalization
RY of R in Y . Then there exist a valuation vz̃ on the residue
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field of some point of the underlying scheme X̃ of X̃ log [i.e.,
a bounded multiplicative seminorm — cf., e.g., [Brk1], §1.1,
§1.2] and a countably indexed cofinal subsystem S ′ of S such
that if Z log → X log is a member of S ′, then, as Y log → X log

ranges over the members of S ′ that lie over Z log, the discrete
valuations on residue fields of points of the underlying scheme
Z of Z log determined by the elements z̃(Y log) ∈ VCN(Y log) [cf.
the discussion preceding the present Corollary 1.15] converge
in the “Berkovich space topology” — i.e., as bounded mul-
tiplicative seminorms — to the valuation on the residue field
of some point of Z determined by vz̃.

(iii) Write Stab(s) ⊆ VCN(X̃ log) for the subset consisting of el-

ements z̃ ∈ VCN(X̃ log) such that the image of s stabilizes
z̃. Suppose that H is l-cyclotomically full [cf. (i)]. Then it
holds that

Stab(s) �= ∅.

In particular, if z̃ ∈ Stab(s), and the residue field of R is
countable, then the image of s lies in the decomposition
group of any valuation vz̃ as in (ii).

(iv) Let Y log → X log be a finite connected subcovering of X̃ log →
X log that admits a stable model over the normalization RY of
R in Y ; z̃1, z̃2 ∈ Stab(s) [cf. (iii)]. Then one of the following
four [mutually exclusive] conditions is satisfied:
(a) z̃1(Y

log), z̃2(Y
log) ∈ Vert(Y log), and δ(z̃1(Y

log), z̃2(Y
log)) ≤

2 [cf. Definition 1.1, (iii)].
(b) z̃1(Y

log), z̃2(Y
log) ∈ Edge(Y log), and, moreover, V(z̃1(Y log))

∩V(z̃2(Y log)) �= ∅.
(c) z̃1(Y

log) ∈ Vert(Y log), z̃2(Y
log) ∈ Edge(Y log), and, more-

over, Vδ≤1(z̃1(Y
log))∩V(z̃2(Y log)) �= ∅ [cf. Definition 1.10,

(i)].
(d) z̃1(Y

log) ∈ Edge(Y log), z̃2(Y
log) ∈ Vert(Y log), and, more-

over, V(z̃1(Y log)) ∩ Vδ≤1(z̃2(Y
log)) �= ∅.

(v) In the situation of (iv), suppose, moreover, that the following
assertion — i.e., concerning “resolution of nonsingulari-
ties” [cf. Remark 1.15.1 below] — holds:

(†RNS): Let Y log → X log be a finite connected sub-

covering of X̃ log → X log that admits a stable model
Y log over RY and y ∈ Y a node of Y. Then there
exists a finite connected subcovering Z log → Y log of

X̃ log → Y log that admits a stable model Z log over RZ

such that the fiber over y of the morphism Z → Y
determined by Z log → Y log is not finite.
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Then every finite connected subcovering Y log → X log of X̃ log →
X log that admits a stable model over RY satisfies one of the
following four [mutually exclusive] conditions:
(a′) z̃1(Y

log), z̃2(Y
log) ∈ Vert(Y log), and z̃1(Y

log) = z̃2(Y
log).

(b′) z̃1(Y
log), z̃2(Y

log) ∈ Edge(Y log), and, moreover, V(z̃1(Y log))
∩V(z̃2(Y log)) �= ∅.

(c′) z̃1(Y
log) ∈ Vert(Y log), z̃2(Y

log) ∈ Edge(Y log), and, more-
over, z̃1(Y

log) ∈ V(z̃2(Y log)).
(d′) z̃1(Y

log) ∈ Edge(Y log), z̃2(Y
log) ∈ Vert(Y log), and, more-

over, z̃2(Y
log) ∈ V(z̃1(Y log)).

(vi) Write Δtp
Xlog for the Σ-tempered fundamental group of

X log

K
[cf. [CbTpIII], Definition 3.1, (ii)]; Πtp

Xlog for the geo-

metrically Σ-tempered fundamental group of X log [i.e.,
the quotient of the tempered fundamental group of X log by the
kernel of the natural surjection from the tempered fundamen-
tal group of X log

K
onto Δtp

X log ]. Thus, we have a natural exact
sequence of topological groups

1 −→ Δtp
Xlog −→ Πtp

Xlog −→ GK −→ 1.

Write Sect(ΠXlog/H) for the set of ΔXlog-conjugacy classes of
continuous sections of the restriction to H ⊆ GK of the natural
surjection ΠXlog � GK and Sect(Πtp

Xlog/H) for the set of Δtp
Xlog-

conjugacy classes of continuous sections of the restriction to
H ⊆ GK of the natural surjection Πtp

Xlog � GK. Then the
natural map

Sect(Πtp
Xlog/H) −→ Sect(ΠXlog/H)

is injective. If, moreover, H is l-cyclotomically full [cf.
(i)], then this map is bijective.

Proof. Assertion (i) follows immediately from the definition of the term
“IPSC-type” [cf. [NodNon], Definition 2.4, (i)], together with the well-
known structure of the maximal pro-Σ† quotient of IK . Next, we verify
assertion (ii). Let us first observe that it follows immediately from
our countability assumption on the residue field of R that the following
three assertions hold:

• If Y log → X log is a member of S, and z̃(Y log) �∈ Cusp(Y log),
then the function field of Y admits a subset which is countable
and dense, i.e., with respect to the topology determined by
the discrete valuation determined by the element z̃(Y log) ∈
VCN(Y log).

• If Y log → X log is a member of S, and z̃(Y log) ∈ Cusp(Y log),
then the normalization RY of R in Y admits a subset which
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is countable and dense, i.e., with respect to the topology de-
termined by the discrete valuation determined by the element
z̃(Y log) ∈ VCN(Y log).

• There exists a countably indexed cofinal subsystem of S [cf.,
e.g., [AbsTpII], Lemma 2.1].

Thus, assertion (ii) follows immediately, by applying a standard ar-
gument involving Cantor diagonalization, from the well-known [local]
compactness of Berkovich spaces [cf., e.g., [Brk1], Theorem 1.2.1]. Here,
we recall in passing that this compactness is, in essence, a conse-
quence of the compactness of a product of copies of the closed interval
[0, 1] ⊆ R. This completes the proof of assertion (ii). We refer to
Theorem A.7 in Appendix for another approach to proving assertion
(ii).
Assertion (iii) follows immediately from the observation that, by ap-

plying Theorem 1.13, (i) [cf. also Remark 1.7.1; assertion (i) of the
present Corollary 1.15; [CmbGC], Proposition 1.2, (i)], together with
the well-known fact that a projective limit of nonempty finite sets is

nonempty, to the various finite connected subcoverings of X̃ log → X log,

one may conclude that the action of GK , via s, on X̃ log fixes some

element z̃s ∈ VCN(X̃ log) of VCN(X̃ log). [Here, we note that when one
applies Theorem 1.13, (i), to the various finite connected subcoverings

of X̃ log → X log, the conducting subgroup “IG” of Theorem 1.13, (i),
must be allowed to vary among suitable open subgroups of the origi-
nal conducting subgroup IG.] Assertion (iv) follows immediately [cf.
also Remark 1.7.1; assertion (i) of the present Corollary 1.15] from
Lemma 1.11, (ii).
Next, we verify assertion (v). Let us first observe that it follows

immediately from assertion (iv) that if Y log → X log is a finite connected

subcovering of X̃ log → X log that admits a stable model over RY , then
z̃1(Y

log) and z̃2(Y
log) lie in a connected sub-semi-graph Γ∗ of ΓY log such

that

VCN(Γ∗)� = Vert(Γ∗)� + Edge(Γ∗)� ≤ 3 + 2 = 5.

Now one verifies immediately that this uniform bound “5” implies that
there exists a cofinal system S = {Y log → X log} consisting of finite

Galois subcoverings Y log → X log of X̃ log → X log such that Y log admits
a stable model over RY , and, moreover, ΓY log admits a connected sub-
semi-graph Γ∗

Y log such that

• z̃1(Y log) and z̃2(Y
log) lie in Γ∗

Y log ;
• VCN(Γ∗

Y log)
� ≤ 5;

• the semi-graphs Γ∗
Y log map isomorphically to one another as

one varies Y log → X log.
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Write V∗(Y log)
def
= Vert(Γ∗

Y log). Then it follows immediately from asser-
tion (iv) that, to complete the verification of assertion (v), it suffices
to verify that the following assertion holds:

Claim 1.15.A: V∗(Y log)� ≤ 1.

Indeed, suppose that V∗(Y log)� ≥ 2. Then it follows immediately that
there exists a compatible system of nodes e(Y log) of Γ∗

Y log [i.e., compat-
ible as one varies Y log → X log in S], each of which abuts to distinct
vertices vα(Y

log), vβ(Y
log) of Γ∗

Y log . [Thus, one may assume that the
vertices vα(−) (respectively, vβ(−)) form a compatible system of ver-
tices.] But this implies that for every Z log → X log in S that lies over
Y log → X log in S, if we write Y log, Z log for the respective stable mod-
els of Y log, Z log [so the morphism Z log → Y log extends to a morphism
Z log → Y log — cf., e.g., [ExtFam], Theorem C], then the inverse im-
age in Z log of the node e(Y log) admits at least one isolated point [i.e.,
e(Z log)], hence [since the covering Z log → Y log is Galois] the entire in-
verse image in Z log of e(Y log) is of dimension zero. On the other hand,
this contradicts the assertion (†RNS) in the statement of assertion (v).
This completes the proof of assertion (v).
Finally, we verify assertion (vi). The injectivity portion of assertion

(v) follows immediately from the injectivity portion of Theorem 1.13,
(iii) [cf. also Remark 1.7.1; assertion (i) of the present Corollary 1.15],

applied to the various finite connected subcoverings of X̃ log → X log,
where we take the “Σ” of Theorem 1.13 to be Σ† [cf. also the fact that,
in the notation of Theorem 1.13, “Πtp

G ” is dense in “ΠG” in the profinite
topology]. Here, we note that

• when one applies Theorem 1.13, (iii), to the various finite con-

nected subcoverings of X̃ log → X log, the conducting subgroup
“IG” of Theorem 1.13, (iii), must be allowed to vary among
suitable open subgroups of the original conducting subgroup
IG, and that

• it follows immediately from the final portion of Lemma 1.11,
(iv), that the resulting conjugacy indeterminacies that occur
at various subcoverings are uniquely determined up to profinite
centralizers of the sections that appear, hence converge in Δtp

Xlog

[i.e., if one passes to an appropriate subsequence of the system
of subcoverings under consideration].

If H is l-cyclotomically full, then the surjectivity of the map

Sect(Πtp
Xlog/H) → Sect(ΠXlog/H)

follows formally [cf. the proof of the final portion of Theorem 1.13, (iii)]
from the nonemptiness verified in assertion (iii). This completes the
proof of assertion (vi). �
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Remark 1.15.1. It follows from [Tama2], Theorem 0.2, (v), that if
K is of characteristic zero, the residue field of R is algebraic over Fp,
and Σ = Primes, then the assertion (†RNS) in the statement of Corol-
lary 1.15, (v), holds.

Remark 1.15.2.

(i) Corollary 1.15, (iii), (v) [cf. also [SemiAn], Lemma 5.5], may
be regarded as a generalization of the Main Result of [PS].
These results are obtained in the present paper [cf. the proof
of Theorem 1.13, (i)] by, in essence, combining, via a simi-
lar argument to the argument applied in the tempered case
treated in [SemiAn], Theorems 3.7, 5.4 [cf. also the proof of
Theorem 1.13, (ii), of the present paper], the uniqueness re-
sult given in [NodNon], Propositions 3.8, (i); 3.9, (i), (ii), (iii)
[cf. the proof of Lemma 1.11, (ii)], with the existence of fixed
points of actions of finite groups on graphs that follows as a
consequence of the classical fact that [discrete or pro-Σ] free
groups are torsion-free [cf. Remarks 1.6.2, 1.13.1; the proof of
Lemma 1.6, (ii)]. One slight difference between the profinite
and tempered cases is that, whereas, in the tempered case,
it follows from the discreteness of the fundamental groups of
graphs that appear that the actions of profinite groups on uni-
versal coverings of such graphs necessarily factor through fi-
nite quotients, the corresponding fact in the profinite case is
obtained as a consequence of the fact that, under a suitable
assumption on the cyclotomic characters that appear, any ho-
momorphism from a “positive slope” module to a torsion-free
“slope zero” module necessarily vanishes [cf. the proof of Claim
1.13.B in Theorem 1.13, (i)]. That is to say, in a word, these
results are obtained in the present paper as a consequence of

abstract considerations concerning abstract profi-
nite groups acting on abstract semi-graphs that
may, for instance, arise as dual semi-graphs of geo-
metric special fibers of stable models of curves that
appear in scheme theory, but, a priori, have nothing
to do with scheme theory.

This a priori irrelevance of scheme theory to such abstract
considerations is reflected both in the variety of the results
obtained in the present §1 as consequences of Theorem 1.13,
as well as in the generality of Corollary 1.15. This approach
contrasts quite substantially with the approach of [PS], i.e.,
where the main results are derived as a consequence of highly
scheme-theoretic considerations concerning stable curves over
complete discrete valuation rings, in which the theory of the
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Brauer group of the function field of such a curve plays a central
role [cf. [PS], §4].

(ii) The essential equivalence between the issue of considering val-
uations fixed by Galois actions and the issue of considering
vertices or edges of associated dual semi-graphs fixed by Ga-
lois actions may be seen in the well-known functorial homotopy
equivalence between the Berkovich space associated to a stable
curve over a complete discrete valuation ring and the associated
dual graph [cf. [Brk2], Theorems 8.1, 8.2]. Moreover, the issue
of convergence of [sub]sequences of valuations fixed by Galois
actions is an easy consequence of the well-known [local] com-
pactness of Berkovich spaces [cf. the proof of Corollary 1.15,
(ii); [Brk1], Theorem 1.2.1], i.e., in essence, a consequence of
the well-known compactness of a product of copies of the closed
interval [0, 1] ⊆ R. That is to say, there is no need to consider
the quite complicated [and, at the time of writing, not well
understood!] structure of inductive limits of local rings, as dis-
cussed in [PS], §1.6.

Remark 1.15.3. Recall that in Corollary 1.15, (ii), and the final por-
tion of Corollary 1.15, (iii), we assume that the residue field of R is
countable. In fact, however, it is not difficult to see that, in the situ-
ation of Corollary 1.15, there exists a complete discrete valuation ring
R† that is dominated by R, and whose residue field is countable such
that

• the smooth log curve X log,
• the closed subgroup H ⊆ GK , and
• the section s : H → ΠXlog

descend to the field of fractions of R†. Indeed, let us first observe that
since the moduli stack of pointed stable curves of a given type over
Z is of finite type over Z, there exists a complete discrete valuation
ring R‡ that is dominated by R, and whose residue field is countable
such that the smooth log curve X log descends to the field of fractions
of R‡. Next, let us observe that since [cf., e.g., [CanLift], Proposition
2.3, (ii)] the geometric fundamental group “ΔXlog” associated to the
smooth log curve X log [i.e., over the field of fractions of R] is naturally
isomorphic to the geometric fundamental group “ΔXlog” associated to
the descended smooth log curve [i.e., over the field of fractions of R‡],
it follows that both of these geometric fundamental groups are topolog-
ically finitely generated [cf., e.g., [MT], Proposition 2.2, (ii)], and hence
that there exists a countably indexed open basis

. . . ⊆ Un+1 ⊆ Un ⊆ . . . ⊆ U2 ⊆ U1 ⊆ U0 = ΔXlog
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of characteristic open subgroups of ΔXlog . In particular, there exists a
complete discrete valuation ring R† that is dominated by R, and whose
residue field is countable such that, for each positive integer n, the finite
collection of finite étale coverings [which are defined by means of finitely
many polynomials, with finitely many coefficients] corresponding to

• the finite quotient ΠXlog � Qn determined by the image of the
composite of the conjugation action ΠXlog → Aut(ΔXlog) and
the natural homomorphism Aut(ΔXlog) → Aut(ΔXlog/Un) and

• the subgroup Hn ⊆ Qn obtained by forming the image of the
composite of the section s : H → ΠXlog and the natural surjec-
tive homomorphism ΠXlog � Qn

descends to the field of fractions of R†.
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2. Discrete combinatorial anabelian geometry

In the present §2, we introduce the notion of a semi-graph of temper-
oids of HSD-type [i.e., “hyperbolic surface decomposition type” — cf.
Definition 2.3, (iii)] and discuss discrete versions of the profinite results
obtained in [NodNon], [CbTpI], [CbTpII], [CbTpIII]. A semi-graph of
temperoids of HSD-type arises naturally from a decomposition [satis-
fying certain properties] of a hyperbolic topological surface and may
be regarded as a discrete analogue of the notion of a semi-graph of
anabelioids of PSC-type. The main technical result of the present §2
is Theorem 2.15, one immediate consequence of which is the following
[cf. Corollary 2.19]:

An isomorphism of groups between the discrete funda-
mental groups of a pair of semi-graphs of temperoids
of HSD-type arises from an isomorphism between the
semi-graphs of temperoids of HSD-type if and only
if the induced isomorphism between profinite comple-
tions of fundamental groups arises from an isomor-
phism between the associated semi-graphs of anabe-
lioids of pro-Primes PSC-type.

In the present §2, let Σ be a nonempty set of prime numbers.

Definition 2.1.

(i) We shall refer to as a semi-graph of temperoids G a collection
of data as follows:

• a semi-graph G [cf. the discussion at the beginning of
[SemiAn], §1],

• for each vertex v of G, a connected temperoid Gv [cf.
[SemiAn], Definition 3.1, (ii)],

• for each edge e of G, a connected temperoid Ge, together
with, for each branch b ∈ e abutting to a vertex v, a mor-
phism of temperoids b∗ : Ge → Gv [cf. [SemiAn], Definition
3.1, (iii)].

We shall refer to a semi-graph of temperoids whose underlying
semi-graph is connected as a connected semi-graph of temper-
oids. Given two semi-graphs of temperoids, there is an evident
notion of (1-)morphism [cf. [SemiAn], Definition 2.1; [SemiAn],
Remark 2.4.2] between semi-graphs of temperoids.

(ii) Let T be a connected temperoid. We shall say that a connected
object H of T is Σ-finite if there exists a morphism J → H
in T such that J is Galois [hence connected — cf. [SemiAn],
Definition 3.1, (iv)], and, moreover, AutT (J) is a finite group
whose order is a Σ-integer [cf. the discussion entitled “Num-
bers” in §0]. We shall say that an object H of T is Σ-finite if
H is isomorphic to a disjoint union of finitely many connected
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Σ-finite objects. We shall say that an object H of T is a finite
object if H is Primes-finite. We shall write

T Σ

for the connected anabelioid [cf. [GeoAn], Definition 1.1.1] ob-
tained by forming the full subcategory of T whose objects are
the Σ-finite objects of T . Thus, we have a natural morphism
of temperoids [cf. Remark 2.1.1 below]

T −→ T Σ.

We shall write

T̂ def
= T Primes

[cf. the discussion entitled “Numbers” in §0]. Finally, we ob-
serve that if T = Btp(Π), where Π is a tempered group [cf.
[SemiAn], Definition 3.1, (i)], and “Btp(−)” denotes the cate-
gory “Btemp(−)” of the discussion at the beginning of [SemiAn],
§3, then T Σ may be naturally identified with B(ΠΣ), i.e., the
connected anabelioid [cf. [GeoAn], Definition 1.1.1; the discus-
sion at the beginning of [GeoAn], §1] determined by the pro-Σ
completion ΠΣ of Π.

(iii) Let G be a semi-graph of temperoids [cf. (i)]. Then, by re-
placing the connected temperoids “G(−)” corresponding to the
vertices and edges “(−)” by the connected anabelioids “GΣ

(−)”

[cf. (ii)], we obtain a semi-graph of anabelioids, which we de-
note by

GΣ

[cf. [SemiAn], Definition 2.1]. Thus, it follows immediately
from the various definitions involved that the various mor-
phisms “G(−) → GΣ

(−)” of (ii) determine a natural morphism

of semi-graphs of temperoids [cf. Remark 2.1.1 below]

G −→ GΣ.

We shall write Ĝ def
= GPrimes. One verifies easily that if G is

a connected semi-graph of temperoids [cf. (i)], then GΣ is a
connected semi-graph of anabelioids.

(iv) Let G be a connected semi-graph of temperoids [cf. (i)]. Sup-
pose that [the underlying semi-graph of] G has at least one
vertex. Then we shall write

B(G) def
= B(Ĝ)

[cf. (iii); the discussion following [SemiAn], Definition 2.1] for
the connected anabelioid determined by the connected semi-

graph of anabelioids Ĝ.
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(v) Let G be a semi-graph of temperoids. Then we shall write
Vert(G), Cusp(G), Node(G), Edge(G), VCN(G), V , C, N , E ,
and δ for the Vert, Cusp, Node, Edge, VCN, V , C, N , E , and
δ of Definition 1.1, (i), (ii), (iii), applied to the underlying
semi-graph of G.

(vi) Let G be a connected semi-graph of temperoids [cf. (i)]. Sup-
pose that [the underlying semi-graph of] G has at least one
vertex. Then we shall write

Btp(G)
for the category whose objects are given by collections of data

{Sv, φe}
—where v (respectively, e) ranges over the elements of Vert(G)
(respectively, Edge(G)) [cf. (v)]; for each v ∈ Vert(G), Sv is
an object of the temperoid Gv corresponding to v; for each
e ∈ Edge(G), with branches b1, b2 abutting to vertices v1, v2,

respectively, φe : ((b1)∗)
∗Sv1

∼→ ((b2)∗)
∗Sv2 is an isomorphism in

the temperoid Ge corresponding to e — and whose morphisms
are given by morphisms [in the evident sense] between such
collections of data. In particular, the category [i.e., connected
anabelioid] B(G) of (iv) may be regarded as a full subcategory

B(G) ⊆ Btp(G)
of Btp(G). One verifies immediately that any object G′ of
Btp(G) determines, in a natural way, a semi-graph of temper-
oids G ′, together with a morphism of semi-graphs of temperoids
G ′ → G. We shall refer to this morphism G ′ → G as the cov-
ering of G associated to G′. We shall say that a morphism
of semi-graphs of temperoids is a covering (respectively, finite
étale covering) of G if it factors as the post-composite of an
isomorphism of semi-graphs of temperoids with the covering
of G associated to some object of Btp(G) (respectively, of B(G)
(⊆ Btp(G))). We shall say that a covering of G is connected
if the underlying semi-graph of the domain of the covering is
connected.

Remark 2.1.1. Since every profinite group is tempered [cf. [SemiAn],
Definition 3.1, (i); [SemiAn], Remark 3.1.1], it follows immediately that
a connected anabelioid [cf. [GeoAn], Definition 1.1.1] determines, in a
natural way [i.e., by considering formal countable coproducts, as in
the discussion entitled “Categories” in [SemiAn], §0], a connected tem-
peroid [cf. [SemiAn], Definition 3.1, (ii)]. In particular, a semi-graph
of anabelioids [cf. [SemiAn], Definition 2.1] determines, in a natural
way, a semi-graph of temperoids [cf. Definition 2.1, (i)]. By abuse of
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notation, we shall often use the same notation for the connected tem-
peroid (respectively, semi-graph of temperoids) naturally associated to
a connected anabelioid (respectively, semi-graph of anabelioids).

Definition 2.2.

(i) Let T be a topological space. Then we shall say that a closed
subspace of T (respectively, a closed subspace of T ; an open
subspace of T ) is a circle (respectively, a closed disc; an open
disc) on T if it is homeomorphic to the set { (s, t) ∈ R2 | s2 +
t2 = 1 } (respectively, { (s, t) ∈ R2 | s2 + t2 ≤ 1 }; { (s, t) ∈
R2 | s2 + t2 < 1 }) equipped with the topology induced by the
topology of R2. If D ⊆ T is a closed disc on T , then we shall
write ∂D ⊆ D for the circle on T determined by the boundary
of D regarded as a two-dimensional topological manifold with
boundary [i.e., the closed subspace of D corresponding to the
closed subspace { (s, t) ∈ R2 | s2 + t2 = 1 } ⊆ { (s, t) ∈ R2 | s2 +
t2 ≤ 1 }] and D◦ def

= D \ ∂D ⊆ D for the open disc on T
obtained by forming the complement of ∂D in D.

(ii) Let (g, r) be a pair of nonnegative integers. Then we shall
say that a pair X = (X, {Di}ri=1) consisting of a connected
orientable compact topological surface X of genus g and a col-
lection of r disjoint closed discs Di ⊆ X of X [cf. (i)] is of
HS-type [where the “HS” stands for “hyperbolic surface”] if
2g − 2 + r > 0.

(iii) Let X = (X, {Di}ri=1) be a pair of HS-type [cf. (ii)]. Then we
shall write

UX
def
= X\

( r⋃
i=1

D◦
i

)
[cf. (i)] and refer to UX as the interior of X. We shall refer
to a circle on UX determined by some ∂Di ⊆ UX [cf. (i)] as
a cusp of UX , or alternatively, X. Write ∂UX ⊆ UX for the
union of the cusps of UX ; IX for the group of homeomorphisms
φ : X

∼→ X such that φ restricts to the identity on UX . Suppose
that Y = (Y , {Ei}sj=1) is also a pair of HS-type. Then we define

an isomorphism X
∼→ Y of pairs of HS-type to be an IX-orbit

of homeomorphisms X
∼→ Y such that each homeomorphism ψ

that belongs to the IX-orbit induces a homeomorphism UX
∼→

UY .
(iv) Let X = (X, {Di}ri=1) be a pair of HS-type [cf. (ii)] and {Yj}j∈J

a finite collection of pairs of HS-type. For each j ∈ J , let
ιj : UYj

↪→ UX [cf. (iii)] be a local immersion [i.e., a map
that restricts to a homeomorphism between some open neigh-
borhood of each point of the domain and the image of the
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open neighborhood, equipped with the induced topology, in
the codomain] of topological spaces. Then we shall say that
a pair ({Yj}j∈J , {ιj}j∈J) is an HS-decomposition of X if the
following conditions are satisfied:
(1) UX =

⋃
j∈J ιj(UYj

).

(2) For any j ∈ J , the complement of the diagonal in UYj
×UX

UYj
is a disjoint union of circles, each of which maps home-

omorphically, via the two projections to UYj
, to two dis-

tinct cusps of UYj
[cf. (iii)]. [Thus, by “Brouwer invariance

of domain”, it follows that ιj restricts to an open immer-
sion on the complement of the cusps of UYj

.]
(3) For any j, j′ ∈ J such that j �= j′, every connected com-

ponent of UYj
×UX

UYj′ projects homeomorphically onto
cusps of UYj

and UYj′ .

(4) For any [i.e., possibly equal] j, j′ ∈ J , we shall refer to a
circle of UYj

×UX
UYj′ that forms a connected component

of UYj
×UX

UYj′ as a pre-node [of the HS-decomposition

({Yj}j∈J , {ιj}j∈J)] and to the cusps of UYj
, UYj′ that arise

as the images of such a pre-node via the projections to UYj
,

UYj′ as the branch cusps of the pre-node. Then we suppose
further that every pre-node maps injectively into UX , and
that the image in UX of the pre-node has empty intersec-
tion with ∂UX , as well as with the image via ιj′′ , for j

′′ ∈ J ,
of any cusp of UYj′′ which is not a branch cusp of the pre-
node. We shall refer to the image in UX of a pre-node as a
node [of the HS-decomposition ({Yj}j∈J , {ιj}j∈J)]. Thus,
[one verifies easily that] every node arises from a unique
pre-node. We shall refer to the branch cusps of the pre-
node that gives rise to a node as the branch cusps of the
node. [Thus, by “Brouwer invariance of domain”, it fol-
lows that, for any pre-node of UYj

×UX
UYj′ , the maps ιj, ιj′

determine a homeomorphism of the topological space ob-
tained by gluing, along the associated node, suitable open
neighborhoods of the branch cusps of UYj

, UYj′ onto the
topological space constituted by a suitable open neighbor-
hood of the associated node in UX .]

(5) For any j ∈ J , every cusp of UYj
maps homeomorphically

onto either a cusp of UX or a node of ({Yj}j∈J , {ιj}j∈J) [cf.
(4)]. Moreover, every cusp of UX arises in this way from a
cusp of UYj

for some [necessarily uniquely determined] j ∈
J . [Thus, by “Brouwer invariance of domain” — together
with a suitable gluing argument as in (4) — it follows
that every cusp of UX admits an open neighborhood that
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arises, for some j ∈ J , as the homeomorphic image, via ιj,
of a suitable open neighborhood of a cusp of UYj

.]
If ({Yj}, {ιj}) is an HS-decomposition of X, then we shall re-
fer to the triple (X, {Yj}, {ιj}) as a collection of HSD-data
[where the “HSD” stands for “hyperbolic surface decomposi-
tion”]. If X = (X, {Yj}, {ιj}) is a collection of HSD-data, then
we shall refer to the topological space UX (respectively, [the
closed subspace of UX corresponding to] an element of the [fi-
nite] set {Yj}; a cusp of UX ; a node of ({Yj}, {ιj}) [cf. (4)]) as
the underlying surface (respectively, a vertex; a cusp; a node)
of X. Also, we shall refer to a cusp or node of X as an edge of
X.

Definition 2.3. Let X = (X, {Yj}, {ιj}) be a collection of HSD-data
[cf. Definition 2.2, (iv)].

(i) We shall refer to the semi-graph

GX

defined as follows as the dual semi-graph of X: We take the
set of vertices (respectively, open edges; closed edges) of GX is
the [finite] set of vertices (respectively, cusps; nodes) of X [cf.
Definition 2.2, (iv)]. For a vertex v and an edge e of X, we
take the set of branches of e that abut to v to be the set of
natural inclusions [i.e., that arise from X — cf. Definition 2.2,
(iv)] from the edge of X corresponding to e into the topological
space UYj

associated to the Yj corresponding to the vertex v.
(ii) We shall refer to the connected semi-graph

GX

of temperoids [cf. Definition 2.1, (i)] defined as follows as the
semi-graph of temperoids associated to X: We take the underly-
ing semi-graph of GX to be GX [cf. (i)]. For each vertex v of GX,
we take the connected temperoid of GX corresponding to v to be
the connected temperoid determined by the category of topo-
logical coverings with countably many connected components
of the topological space UYj

[cf. Definition 2.2, (iii)] associated
to the Yj corresponding to the vertex v. For each edge e of
GX, we take the connected temperoid of GX corresponding to e
to be the connected temperoid determined by the category of
topological coverings with countably many connected compo-
nents of the circle [cf. Definition 2.2, (i)] on UX corresponding
to the edge e. For each branch b of GX, we take the morphism
of temperoids corresponding to b to be the morphism obtained
by pulling back topological coverings of the topological spaces
under consideration.
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(iii) We shall say that a semi-graph of temperoids is of HSD-type if
it is isomorphic to the semi-graph of temperoids associated to
some collection of HSD-data [cf. (ii)].

Example 2.4 (Semi-graphs of temperoids of HSD-type asso-
ciated to stable log curves). Let (g, r) be a pair of nonnegative

integers such that 2g − 2 + r > 0. Write S
def
= Spec(C). In the fol-

lowing, we shall apply the notation and terminology of the discussion
entitled “Curves” in [CbTpI], §0.

(i) Let S → (Mg,r)C be a C-valued point of (Mg,r)C. Write Slog

for the fs log scheme obtained by equipping S with the log

structure induced by the log structure of (Mlog

g,r)C; X
log → Slog

for the stable log curve over Slog corresponding to the resulting

strict (1-)morphism Slog → (Mlog

g,r)C; d for the rank of the

group-characteristic of Slog [cf. [MT], Definition 5.1, (i)], i.e.,
the number of nodes ofX log; X log

an → Slog
an for the morphism of fs

log analytic spaces determined by the morphism X log → Slog;
Xan → San for the underlying morphism of analytic spaces of
X log

an → Slog
an ; X

log
an (C), S

log
an (C) for the respective topological

spaces “X log” defined in [KN], (1.2), in the case where we take
the “X” of [KN], (1.2), to be X log

an , S
log
an , i.e., for T ∈ {X,S},

T log
an (C)

def
= { (t, h) | t ∈ Tan, h ∈ Homgp(M

gp
Tan,t

, S1) such that

h(f) = f(t)/|f(t)| for every f ∈ O×
Tan,t

⊆Mgp
Tan,t

}

— where we write S1 def
= {u ∈ C | |u| = 1 } and MTan for

the sheaf of monoids on Tan that defines the log structure of
T log
an . Then, by considering the functoriality discussed in [KN],

(1.2.5), and the respective maps X log
an (C) → Xan, S

log
an (C) →

San induced by the first projections, we obtain a commutative
diagram of topological spaces and continuous maps

X log
an (C) −−−→ Xan⏐⏐� ⏐⏐�

Slog
an (C) −−−→ San.

Now one verifies immediately from the various definitions in-
volved that Slog

an (C) is homeomorphic to a product (S1)×d of
d copies of S1; moreover, it follows from [NO], Theorem 5.1,
that the left-hand vertical arrow of the above diagram is a
topological fiber bundle. Let s ∈ Slog

an (C). Thus, since [one ver-
ifies easily that] (S1)×d is an Eilenberg-Maclane space [i.e., its
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universal covering space is contractible], the left-hand vertical
arrow of the above diagram determines an exact sequence

1 −→ π1(X
log
an (C)|s) −→ π1(X

log
an (C)) −→ π1(S

log
an (C)) (

∼= Z⊕d) −→ 1

— where we write X log
an (C)|s for the fiber of the left-hand ver-

tical arrow X log
an (C) → Slog

an (C) of the above diagram at s —
which thus determines an outer action

π1(S
log
an (C)) (

∼= Z⊕d) −→ Out(π1(X
log
an (C)|s)).

Write N ⊆ Xan for the finite subset consisting of the nodes of
X log

an , C ⊆ Xan for the finite subset consisting of the cusps of

X log
an , U

def
= Xan \ (N ∪C) ⊆ Xan, and π0(U) for the finite set of

connected components of U . For each node x ∈ N (respectively,
cusp y ∈ C; connected component F ∈ π0(U) of U), write Cx

(respectively, Cy; YF ) ⊆ X log
an (C)|s for the closure of the inverse

image of {x} (respectively, {y}; F ) ⊆ Xan via the composite

X log
an (C)|s

pr1→ X log
an (C) → Xan — where the second arrow is

the upper horizontal arrow of the above diagram. Then one
verifies immediately from the various definitions involved that
there exists a uniquely determined, up to unique isomorphism
[in the evident sense], collection of data as follows:

• a pair of HS-type Z = (Z, {Di}ri=1) of type (g, r) [cf. Def-
inition 2.2, (ii)];

• a homeomorphism φ : X log
an (C)|s

∼→ UZ of X log
an (C)|s with

the interior UZ of Z [cf. Definition 2.2, (iii)] such that
φ restricts to a homeomorphism of

⊔
y∈C Cy ⊆ X log

an (C)|s
with ∂UZ =

⊔r
i=1 ∂Di ⊆ UZ [cf. Definition 2.2, (iii)].

Moreover, there exists a uniquely determined, up to unique
isomorphism [in the evident sense], HS-decomposition of Z [cf.
Definition 2.2, (iv)] such that the set of vertices (respectively,
nodes; cusps) [cf. Definition 2.2, (iv)] of the resulting collec-
tion of HSD-data [cf. Definition 2.2, (iv)] is {φ(YF )}F∈π0(U)

(respectively, {φ(Cx)}x∈N ; {φ(Cy)}y∈C). We shall write

GX log

for the semi-graph of temperoids of HSD-type associated to
this collection of HSD-data [cf. Definition 2.3, (ii)] and refer to
GXlog as the semi-graph of temperoids of HSD-type associated
to X log. Then one verifies immediately from the functoriality
discussed in [KN], (1.2.5), applied to the vertices, nodes, and
cusps of the data under consideration, that the locally trivial
fibration X log

an (C) → Slog
an (C) determines an action

π1(S
log
an (C)) (

∼= Z⊕d) −→ Aut(GXlog),
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which is compatible, in the evident sense, with the outer action

π1(S
log
an (C)) −→ Out(π1(X

log
an (C)|s))

discussed above.
(ii) Let Slog be the fs log scheme obtained by equipping S with the

log structure given by the fs chart N � 1 	→ 0 ∈ C and X log →
Slog a stable log curve of type (g, r) over Slog [cf. [CmbGC],
Example 2.5, in the case where k = C]. Then one verifies easily

that the classifying (1-)morphism Slog → (Mlog

g,r)C of X log →
Slog factors as a composite Slog → T log → (Mlog

g,r)C — where
the first arrow is a morphism that induces an isomorphism
between the underlying schemes, and the second arrow is strict
— and, moreover, if we write Y log → T log for the stable log

curve determined by the strict (1-)morphism T log → (Mlog

g,r)C,

then we have a natural isomorphism over Slog

X log ∼−→ Y log ×T log Slog.

We shall write
GXlog

def
= GY log

[cf. (i)] and refer to GX log as the semi-graph of temperoids of
HSD-type associated to X log. Then, by pulling back the ac-
tion of the second to last display of (i) via the homomor-
phism π1(S

log
an (C)) → π1(T

log
an (C)) induced by the morphism

Slog → T log, we obtain an action

π1(S
log
an (C)) (

∼= Z) −→ Aut(GXlog),

together with a compatible outer action

π1(S
log
an (C)) −→ Out(π1(X

log
an (C)|s)).

Remark 2.4.1. One verifies easily that the discussion of Example 2.4,
(ii), generalizes immediately to the case of arbitrary fs log schemes Slog

with underlying scheme S = Spec(C).

Proposition 2.5 (Fundamental groups of semi-graphs of tem-
peroids of HSD-type). Let G be a semi-graph of temperoids of HSD-
type associated [cf. Definition 2.3, (ii), (iii)] to a collection of HSD-data
X [cf. Definition 2.2, (iv)]. Write UX for the underlying surface of X
[cf. Definition 2.2, (iv)] and

Btp(UX)

for the connected temperoid [cf. [SemiAn], Definition 3.1, (ii)] deter-
mined by the category of topological coverings with countably many con-
nected components of the topological space UX. Then the following hold:
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(i) We have a natural equivalence of categories

Btp(UX)
∼−→ Btp(G)

[cf. Definition 2.1, (vi)]. In particular, Btp(G) is a connected
temperoid. Write

ΠG

for the tempered fundamental group [which is well-defined,
up to inner automorphism] of the connected temperoid Btp(G)
[cf. [SemiAn], Remark 3.2.1; the discussion of “Galois-countable
temperoids” in [IUTeichI], Remark 2.5.3, (i)]. [Thus, the tem-
pered group ΠG admits a natural outer isomorphism with the
topological fundamental group, equipped with the discrete topol-
ogy, of the topological space UX.] We shall refer to this tem-
pered group ΠG as the fundamental group of G.

(ii) Every connected finite étale covering H → G [cf. Definition 2.1,
(vi)] admits a natural structure of semi-graph of temper-
oids of HSD-type.

(iii) The connected semi-graph of anabelioids GΣ [cf. Definition 2.1,
(iii)] is of pro-Σ PSC-type [cf. [CmbGC], Definition 1.1,
(i)]. Write ΠGΣ for the [pro-Σ] fundamental group of GΣ. Then
the natural morphism G → GΣ of semi-graphs of temperoids of
Definition 2.1, (iii), induces a natural outer injection

ΠG ↪→ ΠGΣ

[cf. (i)]. Moreover, this natural outer injection determines an
outer isomorphism

ΠΣ
G

∼−→ ΠGΣ

— where we write ΠΣ
G for the pro-Σ completion of ΠG.

(iv) Let z ∈ VCN(G) [cf. Definition 2.1, (v)]. Write ΠGz for the
tempered fundamental group [cf. [SemiAn], Remark 3.2.1] of
the connected temperoid Gz of G corresponding to z. Then the
natural outer homomorphism

ΠGz −→ ΠG

is a Σ-compatible injection [cf. the discussion entitled “Groups”
in §0].

(v) In the notation of (iii) and (iv), the closure of the image of the
composite

ΠGz ↪→ ΠG ↪→ ΠGΣ

of the outer injections of (iii) and (iv) is a VCN-subgroup
of ΠGΣ [cf. (iii); [CbTpI], Definition 2.1, (i)] associated to
z ∈ VCN(G) = VCN(GΣ).
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Proof. A natural equivalence of categories as in assertion (i) may be
obtained by observing that, after sorting through the various defini-
tions involved, an object of Btp(UX) [i.e., a topological covering of UX]
amounts to the same data as an object of Btp(G). Assertion (ii) follows
immediately from the various definitions involved.
Next, we verify assertion (iii). The assertion that GΣ is of pro-Σ PSC-

type, as well as the assertion that the morphism G → GΣ determines an
outer isomorphism ΠΣ

G
∼→ ΠGΣ , follows immediately from the various

definitions involved. Thus, the assertion that the morphism G → GΣ

determines an outer injection ΠG ↪→ ΠGΣ follows from the well-known
fact that the discrete group ΠG injects into its pro-l completion for any
l ∈ Primes [cf., e.g., [RZ], Proposition 3.3.15; [Prs], Theorem 1.7].
Next, we verify the injectivity portion of assertion (iv). Let us first

observe that it follows immediately from the various definitions involved
that the composite

ΠGz → ΠG ↪→ ΠĜ

[cf. Definition 2.1, (iii)] of the outer homomorphism under consideration
and the outer injection of assertion (iii) [in the case where Σ = Primes]
factors as the composite

ΠGz → ΠĜz
↪→ ΠĜ

of the outer homomorphism ΠGz → ΠĜz
induced by the morphism Gz →

Ĝz of Definition 2.1, (ii), and the natural outer inclusion ΠĜz
↪→ ΠĜ [cf.

[SemiAn], Proposition 2.5, (i)]. Thus, to complete the verification of
the injectivity portion of assertion (iv), it suffices to verify that the
outer homomorphism ΠGz → ΠĜz

is injective. On the other hand,
this follows from the well-known fact that ΠGz injects into its pro-
l completion for any l ∈ Primes [cf., e.g., [RZ], Proposition 3.3.15;
[Prs], Theorem 1.7]. This completes the proof of the injectivity portion
of assertion (iv). Assertion (v) follows immediately from the various
definitions involved. Finally, it follows immediately from assertions
(iii) and (v), together with the evident pro-Σ analogue of [SemiAn],
Proposition 2.5, (i), that the natural outer injection of assertion (iv) is
Σ-compatible. This completes the proof of assertion (iv), hence also of
Proposition 2.5. �

Remark 2.5.1. In the notation of Proposition 2.5, as is discussed in
Proposition 2.5, (i), the fundamental group ΠG of the semi-graph of
temperoids of HSD-type G is naturally isomorphic, up to inner auto-
morphism, to the topological fundamental group, equipped with the
discrete topology, of the compact orientable hyperbolic topological sur-
face with compact boundary UX. In particular, ΠG is finitely generated,
torsion-free, and center-free and injects into its pro-l completion for
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any l ∈ Primes [cf. Proposition 2.5, (iii)]. Moreover, it holds that
Cusp(G) �= ∅ [cf. Definition 2.1, (v)] if and only if ΠG is free.

Remark 2.5.2. In the situation of Example 2.4, (ii), write GXlog for the
semi-graph of temperoids of HSD-type associated to X log; GΣ

Xlog for the
semi-graph of anabelioids of pro-Σ PSC-type of Proposition 2.5, (iii),
in the case where we take the “G” of Proposition 2.5, (iii), to be GXlog ;
GPSC-Σ
X log for the semi-graph of anabelioids of pro-Σ PSC-type associated

to X log [cf. [CmbGC], Example 2.5]. Then it follows from Proposi-

tion 2.5, (iii), that we have a natural outer isomorphism ΠΣ
G
Xlog

∼→
ΠGΣ

Xlog
. On the other hand, by associating finite étale coverings of

X log
an (C) to log étale coverings of Kummer type ofX log [cf. [KN], Lemma

2.2] and then restricting such finite étale coverings to X log
an (C)|s [cf. Ex-

ample 2.4, (i)], we obtain an outer homomorphism ΠΣ
G
Xlog

→ ΠGPSC-Σ
Xlog

.

Then one verifies immediately from the various definitions involved
that the composite of the two outer homomorphisms

ΠGΣ
Xlog

∼←− ΠΣ
G
Xlog

−→ ΠGPSC-Σ
Xlog

is a graphic outer isomorphism [cf. [CmbGC], Definition 1.4, (i)], i.e.,
arises from a uniquely determined isomorphism of semi-graphs of an-
abelioids

GΣ
Xlog

∼−→ GPSC-Σ
Xlog .

Finally, one verifies easily that the above discussion generalizes im-
mediately to the case of arbitrary fs log schemes Slog with underlying
scheme S = Spec(C) [cf. Remark 2.4.1].

Definition 2.6. Let G be a semi-graph of temperoids of HSD-type.
Write ΠG for the fundamental group of G.

(i) Let z ∈ VCN(G) [cf. Definition 2.1, (v)]. Then we shall refer
to a closed subgroup of ΠG that belongs to the ΠG-conjugacy
class of closed subgroups determined by the image of the outer
injection of the display of Proposition 2.5, (iv), as a VCN-
subgroup of ΠG associated to z ∈ VCN(G). If, moreover, z ∈
Vert(G) (respectively, ∈ Cusp(G); ∈ Node(G); ∈ Edge(G)) [cf.
Definition 2.1, (v)], then we shall refer to a VCN-subgroup of
ΠG associated to z as a verticial (respectively, a cuspidal; a
nodal; an edge-like) subgroup of ΠG associated to z.

(ii) Write G̃ → G for the universal covering of G correspond-

ing to ΠG. Let z̃ ∈ VCN(G̃) [cf. Definition 2.1, (v)]. Then
we shall refer to the VCN-subgroup Πz̃ ⊆ ΠG [cf. (i)] deter-

mined by z̃ ∈ VCN(G̃) as the VCN-subgroup of ΠG associ-

ated to z̃ ∈ VCN(G̃). If, moreover, z̃ ∈ Vert(G̃) (respectively,
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∈ Cusp(G̃); ∈ Node(G̃); ∈ Edge(G̃)) [cf. Definition 2.1, (v)],
then we shall refer to the VCN-subgroup of ΠG associated to
z̃ as the verticial (respectively, cuspidal; nodal; edge-like) sub-
group of ΠG associated to z̃.

(iii) Let (g, r) be a pair of nonnegative integers such that 2g−2+r >
0 and v ∈ Vert(G). Then we shall say that v is of type (g, r)
if the “(g, r)” appearing in Definition 2.2, (ii), for the pair of
HS-type corresponding to v coincides with (g, r). Thus, one
verifies easily that v is of type (g, r) if and only if the number
of the branches of edges of G that abut to v is equal to r, and,
moreover,

rankZ(Π
ab
v ) = 2g +max{0, r − 1}

— where we use the notation Πv to denote a verticial subgroup
associated to v.

Remark 2.6.1. In the notation of Definition 2.6, it follows from Propo-
sition 2.5, (iv), that every verticial subgroup of ΠG is naturally isomor-
phic, up to inner automorphism, to the topological fundamental group,
equipped with the discrete topology, of a compact orientable hyperbolic
topological surface with compact boundary. In particular, every verti-
cial subgroup of ΠG is finitely generated, torsion-free, and center-free
and injects into its pro-l completion for any l ∈ Primes [cf. Proposi-
tion 2.5, (iii)]. Moreover, it follows from Proposition 2.5, (iv), that
every edge-like subgroup of ΠG is naturally isomorphic, up to inner au-
tomorphism, to the topological fundamental group, equipped with the
discrete topology, of a unit circle [hence isomorphic to Z].

Definition 2.7. Let G and H be semi-graphs of temperoids of HSD-
type. Write ΠG, ΠH for the fundamental groups of G, H, respectively.

(i) We shall say that an isomorphism of groups ΠG
∼→ ΠH is group-

theoretically verticial (respectively, group-theoretically cuspi-
dal; group-theoretically nodal) if the isomorphism induces a
bijection between the set of the verticial (respectively, cusp-
idal; nodal) subgroups [cf. Definition 2.6, (i)] of ΠG and the set
of the verticial (respectively, cuspidal; nodal) subgroups of ΠH.
We shall say that an outer isomorphism ΠG

∼→ ΠH is group-
theoretically verticial (respectively, group-theoretically cuspi-
dal; group-theoretically nodal) if it arises from an isomorphism

ΠG
∼→ ΠH that is group-theoretically verticial (respectively,

group-theoretically cuspidal; group-theoretically nodal).

(ii) We shall say that an outer isomorphism ΠG
∼→ ΠH is graphic

if it arises from an isomorphism G ∼→ H. We shall say that
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an isomorphism ΠG
∼→ ΠH is graphic if the outer isomorphism

ΠG
∼→ ΠH determined by it is graphic.

Definition 2.8. Let G be a semi-graph of temperoids of HSD-type.
WriteG for the underlying semi-graph of G. Also, for each z ∈ VCN(G),
write Gz for the connected temperoid of G corresponding to z.

(i) Let H be a sub-semi-graph of PSC-type [cf. [CbTpI], Definition
2.2, (i)] of G. Then one may define a semi-graph of temperoids
of HSD-type

G|H
as follows [cf. Fig. 2 of [CbTpI]]: We take the underlying semi-
graph of G|H to be H; for each vertex v (respectively, edge e) of
H, we take the temperoid corresponding to v (respectively, e)
to be Gv (respectively, Ge); for each branch b of an edge e of H
that abuts to a vertex v of H, we take the morphism associated
to b to be the morphism Ge → Gv associated to the branch of G
corresponding to b. We shall refer to G|H as the semi-graph of
temperoids of HSD-type obtained by restricting G to H. Thus,
one has a natural morphism

G|H −→ G
of semi-graphs of temperoids.

(ii) Let S ⊆ Cusp(G) be a subset of Cusp(G) [cf. Definition 2.1, (v)]
which is omittable [cf. [CbTpI], Definition 2.4, (i)] as a subset

of the set of cusps Cusp(Ĝ) of the semi-graph of anabelioids

of pro-Primes PSC-type Ĝ [cf. Proposition 2.5, (iii), in the
case where Σ = Primes] relative to the natural identification

Cusp(G) = Cusp(Ĝ). Then, by eliminating the cusps contained
in S, and, for each vertex v of G, replacing the temperoid Gv

by the temperoid of coverings of Gv that restrict to a trivial
covering over the cusps contained in S that abut to v, we obtain
a semi-graph of temperoids of HSD-type

G•S

[cf. Fig. 3 of [CbTpI]]. We shall refer to G•S as the partial
compactification of G with respect to S.

(iii) Let S ⊆ Node(G) be a subset of Node(G) [cf. Definition 2.1,
(v)] such that the semi-graph obtained by removing the closed
edges corresponding to the elements of S from the underly-
ing semi-graph of G is connected, i.e., in the terminology of
[CbTpI], Definition 2.5, (i), that is not of separating type as a

subset of the set of nodes Node(Ĝ) of the semi-graph of anabe-

lioids of pro-Primes PSC-type Ĝ [cf. Proposition 2.5, (iii), in
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the case where Σ = Primes] relative to the natural identifica-

tion Node(G) = Node(Ĝ). Then one may define a semi-graph
of temperoids of HSD-type

G
S

as follows [cf. Fig. 4 of [CbTpI]]: We take the underlying semi-
graph of G
S to be the semi-graph obtained by replacing each
node e of G contained in S such that V(e) = {v1, v2} ⊆ Vert(G)
[cf. Definition 2.1, (v)] — where v1, v2 are not necessarily dis-
tinct — by two cusps that abut to v1, v2 ∈ Vert(G), respec-
tively, which we think as corresponding to the two branches
of e. We take the temperoid corresponding to a vertex v
(respectively, node e) of G
S to be Gv (respectively, Ge). [Note
that the set of vertices (respectively, nodes) of G
S may be
naturally identified with Vert(G) (respectively, Node(G) \ S).]
We take the temperoid corresponding to a cusp of G
S arising
from a cusp e of G to be Ge. We take the temperoid corre-
sponding to a cusp of G
S arising from a node e of G to be Ge.
For each branch b of G
S that abuts to a vertex v of a node
e (respectively, of a cusp e that does not arise from a node
of G), we take the morphism associated to b to be the mor-
phism Ge → Gv associated to the branch of G corresponding
to b. For each branch b of G
S that abuts to a vertex v of a
cusp of G
S that arises from a node e of G, we take the mor-
phism associated to b to be the morphism Ge → Gv associated
to the branch of G corresponding to b. We shall refer to G
S

as the semi-graph of temperoids of HSD-type obtained from G
by resolving S. Thus, one has a natural morphism

G
S −→ G
of semi-graphs of temperoids.

Remark 2.8.1. One verifies immediately that the operations of re-
striction, partial compactification, and resolution discussed in Defini-
tion 2.8, (i), (ii), (iii), are compatible [in the evident sense] with the
corresponding pro-Σ operations — i.e., as discussed in [CbTpI], Defini-
tion 2.2, (ii); [CbTpI], Definition 2.4, (ii); [CbTpI], Definition 2.5, (ii)
— relative to the operation of passing to the associated semi-graph of
anabelioids of pro-Σ PSC-type [cf. Proposition 2.5, (iii)].

Remark 2.8.2. We take this opportunity to correct an unfortunate
misprint in [CbTpI], Definition 2.5, (ii): the phrase “by two cusps that
abut to v1, v2 ∈ Vert(G), respectively” of [CbTpI], Definition 2.5, (ii),
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should read “by two cusps that abut to v1, v2 ∈ Vert(G), respectively,
which we think as corresponding to the two branches of e”.

Definition 2.9. In the notation of Definition 2.8, let S ⊆ Node(G)
be a subset of Node(G) [cf. Definition 2.1, (v)]. Then we define the
semi-graph of temperoids of HSD-type

G�S

as follows [cf. Fig. 5 of [CbTpI]]:

(i) We take Cusp(G�S)
def
= Cusp(G) [cf. Definition 2.1, (v)].

(ii) We take Node(G�S)
def
= Node(G) \ S [cf. Definition 2.1, (v)].

(iii) We take Vert(G�S) [cf. Definition 2.1, (v)] to be the set of
connected components of the semi-graph obtained from G by
omitting the edges e ∈ Edge(G) \ S [cf. Definition 2.1, (v)].
Alternatively, one may take Vert(G�S) to be the set of equiva-
lence classes of elements of Vert(G) with respect to the equiva-
lence relation “∼” defined as follows: for v, w ∈ Vert(G), v ∼ w
if either v = w or there exist n elements e1, . . . , en ∈ S of S and

n + 1 vertices v0, v1, . . . , vn ∈ Vert(G) of G such that v0
def
= v,

vn
def
= w, and, for 1 ≤ i ≤ n, it holds that V(ei) = {vi−1, vi} [cf.

Definition 2.1, (v)].
(iv) For each branch b of an edge e ∈ Edge(G�S) (= Edge(G) \ S

— cf. (i), (ii)) and each vertex v ∈ Vert(G�S) of G�S, b abuts,
relative to G�S, to v if b abuts, relative to G, to an element of
the equivalence class v [cf. (iii)].

(v) For each edge e ∈ Edge(G�S) (= Edge(G) \ S — cf. (i), (ii))
of G�S, we take the temperoid of G�S corresponding to e ∈
Edge(G�S) to be the temperoid Ge.

(vi) Let v ∈ Vert(G�S) be a vertex of G�S. Then one verifies
easily that there exists a unique sub-semi-graph of PSC-type
[cf. [CbTpI], Definition 2.2, (i)] Hv of the underlying semi-
graph of G whose set of vertices consists of the elements of the
equivalence class v [cf. (iii)]. Write

Tv
def
= Node(G|Hv) \ (S ∩ Node(G|Hv))

[cf. Definition 2.8, (i)]. Then we take the temperoid of G�S cor-
responding to v ∈ Vert(G�S) to be the temperoid Btp((G|Hv)
Tv)
[cf. Definition 2.1, (vi); Proposition 2.5, (i); Definition 2.8,
(iii)].

(vii) Let b be a branch of an edge e ∈ Edge(G�S) (= Edge(G)\S —
cf. (i), (ii)) that abuts to a vertex v ∈ Vert(G�S). Then since b
abuts to v, one verifies easily that there exists a unique vertex w
of G which belongs to the equivalence class v [cf. (iii)] such that
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b abuts to w relative to G. We take the morphism of temperoids
associated to b, relative to G�S, to be the morphism naturally
determined by post-composing the morphism of temperoids
Ge → Gw corresponding to the branch b relative to G with the
natural morphism of temperoids Gw → Btp((G|Hv)
Tv) [cf. (vi)].

We shall refer to this semi-graph of temperoids of HSD-type G�S as
the generization of G with respect to S.

Remark 2.9.1. One verifies immediately that the operation of gener-
ization discussed in Definition 2.9 is compatible [in the evident sense]
with the corresponding pro-Σ operation — i.e., as discussed in [CbTpI],
Definition 2.8 — relative to the operation of passing to the associated
semi-graph of anabelioids of pro-Σ PSC-type [cf. Proposition 2.5, (iii)].

Remark 2.9.2. We take this opportunity to correct an unfortunate
misprint in [CbTpI], Definition 2.8, (vii): the phrase “equivalent class”
should read “equivalence class”.

Proposition 2.10 (Specialization outer isomorphisms). Let G be
a semi-graph of temperoids of HSD-type and S ⊆ Node(G) a subset of
Node(G). Write ΠG for the fundamental group of G and ΠG�S

for the
fundamental group of the generization G�S of G with respect to S [cf.
Definition 2.9]. Then there exists a natural outer isomorphism

ΦG�S
: ΠG�S

∼−→ ΠG

which is functorial, in the evident sense, with respect to isomorphisms
of the pair (G, S) and satisfies the following three conditions:

(a) ΦG�S
induces a bijection between the set of cuspidal subgroups

[cf. Definition 2.6, (i)] of ΠG�S
and the set of cuspidal sub-

groups of ΠG.
(b) ΦG�S

induces a bijection between the set of nodal subgroups [cf.
Definition 2.6, (i)] of ΠG�S

and the set of nodal subgroups of
ΠG associated to the elements of Node(G) \ S.

(c) Let v ∈ Vert(G�S) be a vertex of G�S; Hv, Tv as in Defini-
tion 2.9, (vi). Then ΦG�S

induces a bijection between the ΠG�S
-

conjugacy class of any verticial subgroup [cf. Definition 2.6, (i)]
Πv ⊆ ΠG�S

of ΠG�S
associated to v ∈ Vert(G�S) and the ΠG-

conjugacy class of subgroups obtained by forming the image of
the outer homomorphism

Π(G|Hv )�Tv
−→ ΠG

induced by the natural morphism (G|Hv)
Tv → G [cf. Defini-
tion 2.8, (i), (iii)] of semi-graphs of temperoids.



COMBINATORIAL ANABELIAN TOPICS IV 63

We shall refer to this natural outer isomorphism ΦG�S
as the spe-

cialization outer isomorphism with respect to S.

Proof. An outer isomorphism that satisfies the three conditions in the
statement of Proposition 2.10 may be obtained by observing that, after
sorting through the various definitions involved, an object of Btp(G�S)
amounts to the same data as an object of Btp(G). This completes the
proof of Proposition 2.10. �

Remark 2.10.1. One verifies immediately that the specialization outer
isomorphism discussed in Proposition 2.10 is compatible [in the evident
sense] with the corresponding pro-Σ outer isomorphism — i.e., as dis-
cussed in [CbTpI], Proposition 2.9 — relative to the operation of pass-
ing to the associated semi-graph of anabelioids of pro-Σ PSC-type [cf.
Proposition 2.5, (iii)].

Lemma 2.11 (Infinite cyclic coverings). Let G be a semi-graph of
temperoids of HSD-type. Suppose that (Vert(G)�,Node(G)�) = (1, 1),

i.e., the semi-graph of anabelioids of pro-Primes PSC-type Ĝ [cf. Propo-
sition 2.5, (iii), in the case where Σ = Primes] is cyclically primitive
[cf. [CbTpI], Definition 4.1]. Write ΠG for the fundamental group of
G; G for the underlying semi-graph of G; ΠG (∼= Z) for the discrete
topological fundamental group of G; G∞ → G for the connected cover-
ing of G [cf. Definition 2.1, (vi)] corresponding to the natural surjection

ΠG � ΠG; ΠG∞
def
= Ker(ΠG � ΠG). Then the following hold:

(i) Fix an isomorphism ΠG
∼→ Z. Then there exists a triple of

bijections

V : Z
∼−→ Vert(G∞), N : Z

∼−→ Node(G∞),

C : Z× Cusp(G) ∼−→ Cusp(G∞)

[cf. Definition 2.1, (v)] that satisfies the following properties:
• The bijections are equivariant with respect to the action
of ΠG

∼→ Z on Z by translations and the natural action of
ΠG on “Vert(−)”, “Node(−)”, “Cusp(−)”.

• The post-composite of C with the natural map Cusp(G∞) →
Cusp(G) coincides with the projection Z × Cusp(G) →
Cusp(G) to the second factor.

• For each a ∈ Z, it holds that E(V (a)) = {N(a), N(a +
1)} � {C(a, z) | z ∈ Cusp(G) } [cf. Definition 2.1, (v)].

Moreover, such a triple of bijections is unique, up to post-
composition with the automorphisms of “Vert(−)”, “Node(−)”,
“Cusp(−)” determined by the action of a [single!] element of
ΠG.
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(ii) Let a ≤ b be integers. Write G[a,b] for the [uniquely deter-
mined] sub-semi-graph of PSC-type [cf. [CbTpI], Definition
2.2, (i)] of the underlying semi-graph of G∞ whose set of ver-
tices is equal to {V (a), V (a+1), . . . , V (b)} [cf. (i)]. Also, write
G[a,b] for the semi-graph of temperoids obtained by restricting
G∞ to G[a,b] [in the evident sense — cf. also the procedure dis-
cussed in Definition 2.8, (i)]. Then G[a,b] is a semi-graph of
temperoids of HSD-type.

(iii) Let a ≤ b be integers. For an integer c such that a ≤ c ≤ b
(respectively, a + 1 ≤ c ≤ b), let ΠV (c) ⊆ ΠG[a,b]

(respectively,

ΠN(c) ⊆ ΠG[a,b]
) be a verticial (respectively, nodal) subgroup of

ΠG[a,b]
associated to V (c) ∈ Vert(G[a,b]) (respectively, N(c) ∈

Node(G[a,b])) [cf. (i), (ii)] such that, for a + 1 ≤ c ≤ b, it
holds that ΠN(c) ⊆ ΠV (c−1) ∩ΠV (c). Then the inclusions ΠV (c),
ΠN(c) ↪→ ΠG[a,b]

determine an isomorphism

lim−→
(
ΠV (a) ←↩ ΠN(a+1) ↪→ ΠV (a+1) ←↩ · · · ↪→ ΠV (b−1) ←↩ ΠN(b) ↪→ ΠV (b)

)
∼−→ ΠG[a,b]

— where lim−→ denotes the inductive limit in the category of
groups.

(iv) Let a ≤ b be integers. Then the composite G[a,b] → G∞ →
G determines an outer injection ΠG[a,b]

↪→ ΠG. Moreover,
the image of this outer injection is contained in the normal
subgroup ΠG∞ ⊆ ΠG.

(v) There exists a collection

{D[−a,a]}1≤a∈Z

of subgroups D[−a,a] ⊆ ΠG∞ indexed by the positive integers
which satisfy the following properties:

• D[−a,a] ⊆ ΠG∞ belongs to the ΠG-conjugacy class [of sub-
groups of ΠG] obtained by forming the image of the outer
injection ΠG[−a,a]

↪→ ΠG of (iv).
• D[−a,a] ⊆ D[−a−1,a+1].
• The inclusions D[−a,a] ↪→ ΠG [where a ranges over the
positive integers] determine an isomorphism

lim−→
(
D[−1,1] ↪→ D[−2,2] ↪→ D[−3,3] ↪→ · · ·

) ∼−→ ΠG∞

— where lim−→ denotes the inductive limit in the category of
groups.

(vi) In the situation of (v), since ΠG injects into its pro-l com-
pletion for any l ∈ Primes [cf. Remark 2.5.1], let us regard
subgroups of ΠG as subgroups of the pro-Σ completion ΠΣ

G of

ΠG. Let a be a positive integer. Write D[−a,a] ⊆ ΠΣ
G for the

closure of D[−a,a] in ΠΣ
G . Let γ̂ ∈ ΠΣ

G . Suppose that D[a,−a] ∩
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γ̂ ·D[a,−a] · γ̂−1 �= {1}. Then the image of γ̂ ∈ ΠΣ
G in the pro-Σ

completion ΠΣ
G of ΠG is contained in ΠG ⊆ ΠΣ

G.
(vii) In the situation of (vi), suppose, moreover, that γ̂ is contained

in the closure ΠG∞ ⊆ ΠΣ
G of ΠG∞ in ΠΣ

G . Then γ̂ ∈ D[a,−a].

Proof. Assertions (i), (ii) follow immediately from the various defini-
tions involved. Assertion (iii) follows immediately from a similar argu-
ment to the argument applied in the proof of [CmbCsp], Proposition
1.5, (iii). Next, we verify assertion (iv). The injectivity portion of asser-
tion (iv) follows immediately — by considering a suitable finite étale
subcovering of G∞ → G and applying a suitable specialization outer
isomorphism [cf. Proposition 2.10] — from Proposition 2.5, (iv). The
remainder of assertion (iv) follows immediately from the various defi-
nitions involved. This completes the proof of assertion (iv). Assertion
(v) follows immediately from assertion (iii).
Next, we verify assertion (vi). Write GΣ for the semi-graph of an-

abelioids of pro-Σ PSC-type determined by G [cf. Proposition 2.5,

(iii)], G̃Σ → GΣ for the universal covering of the semi-graph of anabe-
lioids of pro-Σ PSC-type GΣ corresponding to [the torsion-free group]

ΠΣ
G [cf. Proposition 2.5, (iii); [MT], Remark 1.2.2], and G̃Σ for the

underlying pro-semi-graph of G̃Σ. Then it follows immediately —
i.e., by considering a suitable finite étale subcovering of G∞ → G
and applying a suitable specialization outer isomorphism [cf. Propo-
sition 2.10] — from [NodNon], Lemma 1.9, (ii), that our assumption
that D[a,−a] ∩ γ̂ · D[a,−a] · γ̂−1 �= {1} implies that the respective sub-

pro-semi-graphs of G̃Σ determined by D[a,−a], γ̂ · D[a,−a] · γ̂−1 ⊆ ΠΣ
G

[cf. Proposition 2.5, (v)] either contain a common pro-vertex or may
be joined to one another by a single pro-edge. But this implies that
γ̂ maps G[−a,a] to some ΠG-translate of G[−a,a], hence, in particular,
that the image of γ̂ ∈ ΠΣ

G in ΠΣ
G is contained in ΠG ⊆ ΠΣ

G, as desired.
This completes the proof of assertion (vi). Assertion (vii) follows im-
mediately — i.e., by considering a suitable finite étale subcovering of
G∞ → G and applying a suitable specialization outer isomorphism [cf.
Proposition 2.10] — from the commensurable terminality [cf. [CmbGC],
Proposition 1.2, (ii)] of D[a,−a] in a suitable open subgroup of ΠΣ

G con-

taining ΠG∞ [cf. also [NodNon], Lemma 1.9, (ii)]. This completes the
proof of Lemma 2.11. �

The content of the following lemma is entirely elementary and well-
known.

Lemma 2.12 (Action of the symplectic group). Let g be a pos-
itive integer. For each positive integer n and v = (v1, . . . , vn) ∈ Z⊕n,
write vol(v) ∈ Z for the [uniquely determined] nonnegative integer that
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generates the ideal Z · v1 + · · · + Z · vn ⊆ Z; Mn(Z) for the set of n
by n matrices with coefficients in Z; GLn(Z) ⊆Mn(Z) for the group of
matrices A ∈ Mn(Z) such that det(A) ∈ {1,−1}; Sp2g(Z) ⊆ GL2g(Z)
for the subgroup of 2g by 2g symplectic matrices, i.e., B ∈ GL2g(Z)
such that

B ·
(

0 1
−1 0

)
· tB =

(
0 1
−1 0

)
.

[Note that one verifies immediately that, for every A ∈ GLn(Z), it holds
that vol(v) = vol(vA).] Then the following hold:

(i) Let v = (v1, . . . , vg) ∈ Z⊕g. Then there exists an invertible

matrix A ∈ GLg(Z) such that vA = (vol(v),

g−1︷ ︸︸ ︷
0, . . . , 0).

(ii) Let v = (v1, . . . , v2g) ∈ Z⊕2g. Then there exists a symplectic

matrix B ∈ Sp2g(Z) such that vB = (vol(v),

2g−1︷ ︸︸ ︷
0, . . . , 0).

(iii) Let N ⊆ Z⊕2g be a submodule of Z⊕2g and v ∈ Z⊕2g. Suppose
that N �= {0}. Then there exist a nonzero integer n ∈ Z \ {0}
and a symplectic matrix B ∈ Sp2g(Z) such that n · vB ∈ N .

(iv) Let N ⊆ Z⊕2g be a submodule of Z⊕2g and π : Z⊕2g � Z a
surjection. Suppose that N is of infinite index in Z⊕2g. Then
there exists a symplectic matrix B ∈ Sp2g(Z) such that N ·B ⊆
Ker(π).

Proof. First, we verify assertion (i). Let us first observe that if v =
0 [i.e., vol(v) = 0], then assertion (i) is immediate. Thus, to verify
assertion (i), we may assume without loss of generality that v �= 0. In
particular, to verify assertion (i), by replacing v by vol(v)−1 · v ∈ Z⊕g,
we may assume without loss of generality that vol(v) = 1. On the
other hand, since vol(v) = 1, one verifies immediately that Z⊕g/(Z · v)
is a free Z-module of rank g − 1, hence that there exists an injection
Z⊕g−1 ↪→ Z⊕g that induces an isomorphism (Z · v) ⊕ Z⊕g−1 ∼→ Z⊕g.
This completes the proof of assertion (i).
Next, we verify assertion (ii). Since [one verifies easily that] Sp2(Z) =

SL2(Z) = {B ∈ GL2(Z) | det(B) = 1 }, assertion (ii) in the case where
g = 1 follows immediately from assertion (i) [in the case where we take
“g” in assertion (i) to be 2], together with the [easily verified] fact that{
det

(
a b
c d

)
, det

(
a −b
c −d

)}
= {1,−1} for every

(
a b
c d

)
∈ GL2(Z).

For i ∈ {1, . . . , g}, write Mi for the submodule of Z⊕2g generated by

(0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0) ∈ Z⊕2g

— where the “1’s” lie, respectively, in the i-th and (g + i)-th compo-
nents. Then, by applying assertion (ii) in the case where g = 1 [already
verified above] to the Mi’s, we conclude that, to complete the verifi-
cation of assertion (ii), we may assume without loss of generality that
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vi = 0 for every g + 1 ≤ i ≤ 2g. Write v≤g
def
= (v1, . . . , vg) ∈ Z⊕g. Then

let us observe that it follows from assertion (i) that there exists an
invertible matrix A ∈ GLg(Z) such that v≤gA = (vol(v≤g), 0, . . . , 0) =
(vol(v), 0, . . . , 0). Thus, assertion (ii) follows immediately from the
[easily verified] fact that(

A 0
0 tA−1

)
∈ Sp2g(Z).

This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). Assertion (iv)

follows immediately — by applying the self-duality of Z⊕2g with respect

to the symplectic form determined by

(
0 1
−1 0

)
— from assertion (iii).

This completes the proof of Lemma 2.12. �

Lemma 2.13 (Automorphisms of surface groups). Let g be a
positive integer, Π the topological fundamental group of a connected
orientable compact topological surface of genus g, π : Π � Z a surjec-
tion, and J ⊆ Π a subgroup of Π such that the image of J in Πab is
of infinite index in Πab. [For example, this will be the case if J is
generated by 2g − 1 elements.] Then there exists an automorphism σ
of Π such that σ(J) ⊆ Ker(π).

Proof. Write H
def
= Hom(Π,Z) = HomZ(Π

ab,Z). Let us fix isomor-

phisms H
∼→ Z⊕2g and H2(Π,Z)

∼→ Z. Then it follows from the
well-known theory of Poincaré duality that the cup product in group
cohomology

H ×H = H1(Π,Z)×H1(Π,Z) −→ H2(Π,Z) ∼= Z

determines a perfect pairing on H; moreover, if we write AutPD(H) ⊆
Aut(H) (

∼→ GL2g(Z) — cf. the notation of Lemma 2.12) for the sub-
group of automorphisms of H that are compatible with this perfect
pairing, then — by replacing the isomorphism H

∼→ Z⊕2g by a suit-
able isomorphism if necessary — the isomorphism Aut(H)

∼→ GL2g(Z)

determines an isomorphism AutPD(H)
∼→ Sp2g(Z) [cf. the notation of

Lemma 2.12]. On the other hand, recall [cf., e.g., the discussion preced-
ing [DM], Theorem 5.13] that the natural homomorphism Aut(Π) →
Aut(H) determines a surjection Aut(Π) � AutPD(H) (⊆ Aut(H)).
Thus, Lemma 2.13 follows immediately from Lemma 2.12, (iv). This
completes the proof of Lemma 2.13. �

Lemma 2.14 (Finitely generated subgroups of surface groups).
Let G be a semi-graph of temperoids of HSD-type and J ⊆ ΠG a finitely
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generated subgroup of the fundamental group ΠG of G. Then the fol-
lowing hold:

(i) Suppose that Cusp(G) �= ∅. Then there exist a subgroup F ⊆
ΠG of finite index and a surjection F � J such that J ⊆ F ,
and, moreover, the restriction of the surjection F � J to J ⊆
F is the identity automorphism of J .

(ii) Suppose that (Vert(G)�,Cusp(G)�,Node(G)�) = (1, 0, 1). Thus,
since we are in the situation of Lemma 2.11, we shall apply
the notational conventions established in Lemma 2.11. Suppose
that the image of J in Πab

G is of infinite index in Πab
G . [For

example, this will be the case if J is generated by rankZ(Π
ab
G )−1

elements.] Then there exists an automorphism σ ∈ Aut(ΠG)
of ΠG such that σ(J) ⊆ ΠG∞.

(iii) In the situation of (ii), suppose, moreover, that J ⊆ ΠG∞.
Then there exists a positive integer a ∈ Z such that J ⊆ D[−a,a]

[cf. Lemma 2.11, (v)].

Proof. Assertion (i) follows from [SemiAn], Corollary 1.6, (ii), together
with the fact that ΠG is a finitely generated free group [cf. Remark 2.5.1].
Assertion (ii) follows from Lemma 2.13. Assertion (iii) follows from
Lemma 2.11, (v), together with our assumption that J is finitely gen-
erated. This completes the proof of Lemma 2.14. �

Theorem 2.15 (Profinite conjugates of finitely generatedPrimes-
compatible subgroups). Let Π be the topological fundamental group
of a compact orientable hyperbolic topological surface with compact bound-
ary [cf. Remark 2.5.1] and H, J ⊆ Π subgroups. Since Π injects into
its pro-l completion for any l ∈ Primes [cf., e.g., [RZ], Proposition
3.3.15; [Prs], Theorem 1.7], let us regard subgroups of Π as subgroups

of the profinite completion Π̂ of Π. Write H, J ⊆ Π̂ for the closures

of H, J in Π̂, respectively. Suppose that the following conditions are
satisfied:

(a) The subgroups H and J are finitely generated.
(b) If J is of infinite index in Π, then J is of infinite index in

Π̂.

[Here, we note that condition (b) is automatically satisfied whenever Π
is free — cf. [SemiAn], Corollary 1.6, (ii).] Then the following hold:

(i) It holds that J = J ∩ Π.

(ii) Suppose that there exists an element γ̂ ∈ Π̂ such that

H ⊆ γ̂ · J · γ̂−1.

Then there exists an element δ ∈ Π such that

H ⊆ δ · J · δ−1.
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Proof. Let us first observe that, to verify Theorem 2.15, we may assume
without loss of generality that Π is the fundamental group ΠG of a
semi-graph of temperoids of HSD-type G [cf. Definition 2.3].

Next, we claim that the following assertion holds:

Claim 2.15.A: Theorem 2.15 holds in the case where J
is of finite index in ΠG.

Indeed, write N ⊆ ΠG for the normal subgroup of ΠG obtained by
forming the intersection of all ΠG-conjugates of J . Then since J is of
finite index in ΠG, it is immediate that N is of finite index in ΠG. Thus,
by considering the images in ΠG/N of the various groups involved, one
verifies immediately that Theorem 2.15 holds in the case where J is of
finite index in ΠG. This completes the proof of Claim 2.15.A. Thus, in
the remainder of the proof of Theorem 2.15, we may assume without
loss of generality that J is of infinite index in ΠG, which implies that

J is of infinite index in Π̂G [cf. condition (b)].
Next, we claim that the following assertion holds:

Claim 2.15.B: Let F ⊆ ΠG be a subgroup of finite
index such that J ⊆ F . Suppose that the assertion
obtained by replacing ΠG in assertion (i) by F holds.
Then assertion (i) holds, and, in the situation of as-
sertion (ii), there exists a ΠG-conjugate of H that is
contained in F . If, moreover, the assertion obtained
by replacing ΠG in assertion (ii) by F holds, then as-
sertion (ii) holds.

Indeed, let us first observe that since the natural inclusion F ↪→ ΠG
is Primes-compatible [cf. the discussion entitled “Groups” in §0], the
profinite completion F̂ of F may be identified with the closure F of F

in Π̂G. In particular, the closure of J in F̂ is naturally isomorphic to the

closure J of J in Π̂G. Thus, it follows from Claim 2.15.A applied to F
that the assertion obtained by replacing ΠG in assertion (i) by F implies
assertion (i). Next, let us observe that in the situation of assertion (ii),

since [one verifies immediately that] ΠG · F = Π̂G, by replacing H by a
suitable ΠG-conjugate of H, we may assume without loss of generality
that γ̂ ∈ F . In particular, since H ⊆ γ̂ · J · γ̂−1 ⊆ γ̂ · F · γ̂−1 = F ,
it follows that H ⊆ F ∩ ΠG = F [cf. Claim 2.15.A]. Thus, one verifies
easily that the assertion obtained by replacing ΠG in assertion (ii) by
F implies assertion (ii). This completes the proof of Claim 2.15.B.
Next, we verify Theorem 2.15 in the case where Cusp(G) �= ∅.

Suppose that Cusp(G) �= ∅. Then it follows from Lemma 2.14, (i),
that there exist a subgroup F ⊆ ΠG of finite index and a surjection
π : F � J such that J ⊆ F , and, moreover, the restriction of π to
J ⊆ F is the identity automorphism of J . Now it follows immediately
from Claim 2.15.B that, by replacing ΠG by F , we may assume without
loss of generality that ΠG = F . Next, let us observe that since [it is
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immediate that] J ⊆ J ∩ ΠG, to complete the verification of assertion
(i) in the case where Cusp(G) �= ∅, it suffices to verify that J ∩ΠG ⊆ J .
Moreover, since J ⊆ J ∩ ΠG (⊆ J), it follows immediately from the

equality π̂|J = idJ [where we write π̂ : Π̂G � J for the surjection in-
duced by π] that, to verify the inclusion J∩ΠG ⊆ J , it suffices to verify
that π̂(J ∩ ΠG) ⊆ π̂(J). On the other hand, one verifies easily that

π̂(J ∩ ΠG) ⊆ π̂(ΠG) = J = π̂(J),

as desired. This completes the proof of assertion (i) in the case where
Cusp(G) �= ∅.

Next, to verify assertion (ii) in the case where Cusp(G) �= ∅, let us
observe that, by replacing γ̂ by γ̂ · π̂(γ̂−1), we may assume without
loss of generality that γ̂ ∈ Ker(π̂). Now we claim that the following
assertion holds:

Claim 2.15.C: It holds that H ⊆ γ̂ · J · γ̂−1.

Indeed, since [one verifies easily that] γ̂−1 · H · γ̂, J ⊆ J , it follows
immediately from the equality π̂|J = idJ that, to verify Claim 2.15.C,
it suffices to verify that π̂(γ̂−1 ·H · γ̂) ⊆ π̂(J). On the other hand, since
γ̂ ∈ Ker(π̂), it holds that

π̂(γ̂−1 ·H · γ̂) = π̂(H) ⊆ π̂(ΠG) = J = π̂(J),

as desired. This completes the proof of Claim 2.15.C. In particular,
it follows immediately from [IUTeichI], Theorem 2.6 [i.e., in essence,
the argument given in the proof of [André], Lemma 3.2.1], that there
exists an element δ ∈ ΠG such that δ−1 ·H · δ = γ̂−1 ·H · γ̂ ⊆ J . This
completes the proof of assertion (ii) in the case where Cusp(G) �= ∅,
hence also of Theorem 2.15 in the case where Cusp(G) �= ∅.
Next, we verify Theorem 2.15 in the case where Cusp(G) = ∅. Sup-

pose that Cusp(G) = ∅. First, we observe that since J is of infinite

index in Π̂G, it follows immediately that [ΠG : J ·N ] → +∞ as N ranges
over the normal subgroups of ΠG of finite index, hence [cf. Claim 2.15.B;
the fact that J is finitely generated] that, by replacing ΠG by a suitable
subgroup of finite index in ΠG that contains J , we may assume without
loss of generality that the image of J in Πab

G is of infinite index in Πab
G [cf.

Remark 2.5.1]. Moreover, by considering suitable specialization outer
isomorphisms [cf. Proposition 2.10], we may assume without loss of
generality that the equality (Vert(G)�,Cusp(G)�,Node(G)�) = (1, 0, 1)
holds. Thus, since we are in the situation of Lemma 2.11, we shall
apply the notational conventions established in Lemma 2.11. More-
over, it follows from Lemma 2.14, (ii), that, by considering a suitable
automorphism of ΠG, we may assume without loss of generality that
J ⊆ ΠG∞ . Thus, it follows from Lemma 2.14, (iii), that there exists a
positive integer a ∈ Z such that J ⊆ D[−a,a] ⊆ ΠG∞ .
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Next, let us observe that since ΠG/ΠG∞
∼→ ΠG (∼= Z) injects into

its profinite completion, it follows that J ∩ ΠG ⊆ ΠG∞ . In particular,
by applying Lemma 2.14, (iii), we conclude that, for any given fixed
element α ∈ J ∩ ΠG, we may assume, by possibly enlarging a, that
α ∈ D[−a,a]. Next, let us observe — i.e., by considering a suitable finite
étale subcovering of G∞ → G and applying a suitable specialization
outer isomorphism [cf. Proposition 2.10] — that the natural inclusion
D[−a,a] ↪→ ΠG is Primes-compatible [cf. Proposition 2.5, (iv)]. In par-
ticular, by replacing G by G[−a,a] [cf. Lemma 2.11, (ii)], we conclude
that assertion (i) in the case where Cusp(G) = ∅ follows from asser-
tion (i) in the case where Cusp(G) �= ∅ [already verified above]. This
completes the proof of assertion (i) in the case where Cusp(G) = ∅.

Finally, to verify assertion (ii) in the case where Cusp(G) = ∅, let us
observe that ifH = {1}, then assertion (ii) is immediate. Thus, we may
assume without loss of generality that H �= {1}. Next, let us observe

that since J ⊆ D[−a,a] ⊆ ΠG∞ , and ΠG/ΠG∞
∼→ ΠG (∼= Z) injects into

its profinite completion, one verifies immediately that H ⊆ ΠG∞ . Thus,
since H ⊆ ΠG∞ is finitely generated, it follows from Lemma 2.14, (iii),
that, by possibly enlarging a, we may assume without loss of generality
that H ⊆ D[−a,a]. Since, moreover, {1} �= H ⊆ D[−a,a] ∩ γ̂ · J · γ̂−1 ⊆
D[−a,a]∩γ̂ ·D[−a,a] ·γ̂−1, it follows from Lemma 2.11, (vi), that the image

of γ̂ ∈ Π̂G in the profinite completion Π̂G of ΠG is contained in ΠG ⊆ Π̂G,
which thus implies that there exists an element γ′ ∈ ΠG such that
γ′γ̂ ∈ ΠG∞ . In particular, by replacing H by γ′ ·H · (γ′)−1 and possibly
enlarging a, we may assume without loss of generality that γ̂ ∈ ΠG∞ .
Thus, again by applying the fact that {1} �= D[−a,a] ∩ γ̂ ·D[−a,a] · γ̂−1,

we conclude from Lemma 2.11, (vii), that γ̂ ∈ D[−a,a]. In particular,
since, as discussed above [cf. the discussion immediately preceding the
proof of assertion (i) in the case where Cusp(G) = ∅], the natural
inclusion D[−a,a] ↪→ ΠG is Primes-compatible, by replacing G by G[−a,a],
we conclude that assertion (ii) in the case where Cusp(G) = ∅ follows
from assertion (ii) in the case where Cusp(G) �= ∅ [already verified
above]. This completes the proof of assertion (ii) in the case where
Cusp(G) = ∅, hence also of Theorem 2.15. �

Remark 2.15.1. In passing, we observe that the analogue of Theo-
rem 2.15 for arbitrary Σ �= Primes is false. Indeed, if, in the statement
of Theorem 2.15, one replaces “Π” by the group Z, then it is easy to
construct counterexamples to assertions (i), (ii). One may then obtain
counterexamples in the case of the original “Π” by considering the case
where the original “Π” is the fundamental group ΠG of a semi-graph
of temperoids of HSD-type G such that Edge(G) �= ∅ and considering
suitable edge-like subgroups [i.e., isomorphic to Z!] of ΠG.
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Lemma 2.16 (VCN-subgroups of infinite index). Let G be a semi-
graph of anabelioids of pro-Σ PSC-type (respectively, of temperoids of

HSD-type). Write J
def
= ΠΣ

G (respectively, J
def
= ΠG) for the [pro-Σ

(respectively, discrete)] fundamental group of G. Let H ⊆ J be a VCN-
subgroup of J . Consider the following two [mutually exclusive] condi-
tions:

(1) H = J .
(2) H is of infinite index in J .

Then we have equivalences

(1) ⇐⇒ (1′); (2) ⇐⇒ (2′)

with the following two conditions:

(1′) H is verticial, and Node(G) = ∅.
(2′) Either H is edge-like, or Node(G) �= ∅.

Proof. The implication (1′) ⇒ (1) follows immediately from the various
definitions involved. Thus, one verifies immediately [by considering
suitable contrapositive versions of the various implications involved]
that, to complete the verification of Lemma 2.16, it suffices to verify
the implication (2′) ⇒ (2). To this end, let us observe that if H is edge-
like, then since H is abelian, and every closed subgroup of J of finite
index is center-free [cf., e.g., Remark 2.5.1; [CmbGC], Remark 1.1.3],
we conclude that H is of infinite index in J . Thus, we may assume
without loss of generality that H is verticial and Node(G) �= ∅. Now
since Node(G) �= ∅, it follows from a similar argument to the argument
in the discussion entitled “Curves” in [AbsTpII], §0, that, by replacing
G by a suitable connected finite étale covering of G, we may assume
without loss of generality that the underlying semi-graph of G is loop-
ample [cf. the discussion entitled “Semi-graphs” in [AbsTpII], §0]. In
particular, since [one verifies easily that] the abelianization of the [pro-
Σ completion of the] topological fundamental group of a noncontractible
semi-graph is infinite, the image of H in the abelianization of J is of
infinite index, which thus implies that H is of infinite index in J , as
desired. This completes the proof of Lemma 2.16. �

Corollary 2.17 (Profinite conjugates of VCN-subgroups). Let G
and H be semi-graphs of temperoids of HSD-type. Write ΠG, ΠH for the
respective fundamental groups of G, H. Thus, we obtain a semi-graph of

anabelioids of pro-Primes PSC-type Ĥ [cf. Proposition 2.5, (iii), in the
case where Σ = Primes]. Let zG ∈ VCN(G), zH ∈ VCN(H), ΠzG ⊆ ΠG
a VCN-subgroup of ΠG associated to zG ∈ VCN(G), ΠzH ⊆ ΠH a VCN-
subgroup of ΠH associated to zH ∈ VCN(H),

α̃ : ΠG
∼−→ ΠH
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an isomorphism of groups, and γ̂ ∈ ΠĤ an element of the [profinite]

fundamental group ΠĤ of Ĥ. Let us fix an injection ΠH ↪→ ΠĤ such
that the induced outer injection is the outer injection of Proposition 2.5,
(iii), and regard subgroups of ΠH as subgroups of ΠĤ by means of this

fixed injection. Write ΠzH ⊆ ΠĤ for the closure of ΠzH in ΠĤ. [Thus,

ΠzH ⊆ ΠĤ is a VCN-subgroup of ΠĤ associated to zH ∈ VCN(Ĥ) =
VCN(H) — cf. Proposition 2.5, (v).] Then the following hold:

(i) It holds that ΠzH = ΠzH ∩ ΠH.
(ii) Suppose that

α̃(ΠzG) ⊆ γ̂ · ΠzH · γ̂−1.

Then there exists an element δ ∈ ΠH such that

α̃(ΠzG) ⊆ δ · ΠzH · δ−1.

Proof. First, let us observe that it follows immediately from Defini-
tion 2.3, (ii), together with the well-known structure of topological fun-
damental groups of topological surfaces, that ΠzG and ΠzH are finitely
generated. Thus, it follows immediately from Theorem 2.15 that, to
complete the verification of Corollary 2.17, it suffices to verify that the
following assertion holds:

If ΠzH �= ΠH, then ΠzH is of infinite index in ΠĤ.

To this end, let us observe that since ΠzH �= ΠH, it follows from
Lemma 2.16 [in the case where “G” is a semi-graph of temperoids
of HSD-type] that either zH is an edge, or Node(H) �= ∅. On the
other hand, in either of these two cases, it follows immediately from
Lemma 2.16 [in the case where “G” is a semi-graph of anabelioids of
PSC-type], together with Proposition 2.5, (v), that ΠzH is of infinite
index in ΠĤ. This completes the proof of Corollary 2.17. �

Corollary 2.18 (Properties of VCN-subgroups). Let G be a semi-
graph of temperoids of HSD-type. Write ΠG for the fundamental group

of G. Also, write G̃ → G for the universal covering of G corresponding
to ΠG. Then the following hold:

(i) For i = 1, 2, let ṽi ∈ Vert(G̃) [cf. Definition 2.1, (v)]. Write
Πṽi ⊆ ΠG for the verticial subgroup of ΠG associated to ṽi [cf.
Definition 2.6, (ii)]. Consider the following three [mutually
exclusive] conditions [cf. Definition 2.1, (v)]:
(1) δ(ṽ1, ṽ2) = 0.
(2) δ(ṽ1, ṽ2) = 1.
(3) δ(ṽ1, ṽ2) ≥ 2.
Then we have equivalences

(1) ⇐⇒ (1′); (2) ⇐⇒ (2′); (3) ⇐⇒ (3′)

with the following three conditions:
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(1′) Πṽ1 = Πṽ2.
(2′) Πṽ1 ∩ Πṽ2 �= {1}, but Πṽ1 �= Πṽ2.
(3′) Πṽ1 ∩ Πṽ2 = {1}.

(ii) In the situation of (i), suppose that condition (2), hence also
condition (2′), holds. Then it holds that (E(ṽ1) ∩ E(ṽ2))� = 1
[cf. Definition 2.1, (v)], and, moreover, if we write ẽ ∈ E(ṽ1)∩
E(ṽ2) for the unique element of E(ṽ1)∩E(ṽ2), then Πṽ1 ∩Πṽ2 =
Πẽ; Πẽ �= Πṽ1; Πẽ �= Πṽ2.

(iii) For i = 1, 2, let ẽi ∈ Edge(G̃) [cf. Definition 2.1, (v)]. Write
Πẽi ⊆ ΠG for the edge-like subgroup of ΠG associated to ẽi
[cf. Definition 2.6, (ii)]. Then Πẽ1 ∩ Πẽ2 �= {1} if and only if
ẽ1 = ẽ2. In particular, Πẽ1∩Πẽ2 �= {1} if and only if Πẽ1 = Πẽ2

[cf. Remark 2.6.1].

(iv) Let ṽ ∈ Vert(G̃), ẽ ∈ Edge(G̃). Write Πṽ, Πẽ ⊆ ΠG for the
VCN-subgroups of ΠG associated to ṽ, ẽ, respectively. Then
Πẽ∩Πṽ �= {1} if and only if ẽ ∈ E(ṽ). In particular, Πẽ∩Πṽ �=
{1} if and only if Πẽ ⊆ Πṽ [cf. Remark 2.6.1].

(v) Every VCN-subgroup of ΠG is commensurably terminal in
ΠG.

Proof. Write G̃∧ → Ĝ for the universal profinite étale covering of the

semi-graph of anabelioids of pro-Primes PSC-type Ĝ [cf. Proposition 2.5,

(iii), in the case where Σ = Primes] determined by G̃ → G and ΠĜ for

the [profinite] fundamental group of Ĝ determined by the universal

covering G̃∧ → Ĝ. Thus, one verifies easily that one obtains a nat-
ural morphism of [pro-]semi-graphs of temperoids [cf. Remark 2.1.1]

G̃ → G̃∧ that induces injections ΠG ↪→ ΠĜ [cf. Proposition 2.5, (iii)]

and VCN(G̃) ↪→ VCN(G̃∧) [cf. [NodNon], Definition 1.1, (iii)] such
that

• the injection VCN(G̃) ↪→ VCN(G̃∧) is compatible with the re-
spective “δ’s” [cf. Definition 2.1, (v); [NodNon], Definition 1.1,
(viii)], and, moreover,

• for each z̃ ∈ VCN(G̃), the closure Πz̃ ⊆ ΠĜ of the image of the
VCN-subgroup Πz̃ ⊆ ΠG of ΠG associated to z̃ via the injection
ΠG ↪→ ΠĜ coincides with the VCN-subgroup of ΠĜ [cf. [CbTpI],
Definition 2.1, (i)] associated to the image of z̃ via the injection

VCN(G̃) ↪→ VCN(G̃∧) [cf. also Proposition 2.5, (v)].

First, we verify assertion (i). The equivalence (1) ⇔ (1′) follows im-
mediately from the equivalence (1) ⇔ (1′) of [NodNon], Lemma 1.9,
(ii), together with the discussion at the beginning of the present proof.
Next, let us observe that, by considering the edge-like subgroup asso-
ciated to an element of E(ṽ1) ∩ E(ṽ2), we conclude that condition (2)
implies the condition that Πṽ1 ∩ Πṽ2 �= {1}. Thus, the implication (2)
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⇒ (2′) follows immediately from the equivalence (1) ⇔ (1′). The im-
plication (2′) ⇒ (2) follows immediately from Corollary 2.17, (i), and
the implication (2′) ⇒ (2) of [NodNon], Lemma 1.9, (ii), together with
the discussion at the beginning of the present proof. The equivalence
(3) ⇔ (3′) follows immediately from the equivalences (1) ⇔ (1′) and
(2) ⇔ (2′). This completes the proof of assertion (i).
Assertion (iii) (respectively, (iv)) follows immediately from [NodNon],

Lemma 1.5 (respectively, [NodNon], Lemma 1.7), together with the
discussion at the beginning of the present proof. Assertion (v) fol-
lows formally from assertions (i), (iii) [cf. also the proof of [CmbGC],
Proposition 1.2, (ii)].
Finally, we verify assertion (ii). Suppose that condition (2) [in the

statement of assertion (i)], hence also condition (2′) [in the statement
of assertion (i)], holds. Then the assertion that (E(ṽ1) ∩ E(ṽ2))� = 1

follows immediately from the fact that the underlying semi-graph of G̃
is a tree. The remainder of assertion (ii) follows immediately — in light
of assertion (iii) — from Corollary 2.17, (i), and [NodNon], Lemma 1.9,
(i) [cf. also Remark 2.6.1], together with the discussion at the beginning
of the present proof. This completes the proof of assertion (ii), hence
also of Corollary 2.18. �

Corollary 2.19 (Graphicity of outer isomorphisms). Let G, H
be semi-graphs of temperoids of HSD-type. Write Ĝ, Ĥ for the semi-
graphs of anabelioids of pro-Primes PSC-type determined by G, H [cf.
Proposition 2.5, (iii), in the case where Σ = Primes], respectively; ΠG,
ΠH for the respective fundamental groups of G, H; ΠĜ, ΠĤ for the

respective [profinite] fundamental groups of Ĝ, Ĥ. Let

α : ΠG
∼−→ ΠH

be an outer isomorphism. Write α̂ : ΠĜ
∼→ ΠĤ for the outer isomor-

phism determined by the outer isomorphism α and the natural outer

isomorphisms Π̂G
∼→ ΠĜ, Π̂H

∼→ ΠĤ of Proposition 2.5, (iii). Then the
following hold:

(i) The outer isomorphism α is group-theoretically verticial
(respectively, group-theoretically cuspidal; group-theore-
tically nodal; graphic) [cf. Definition 2.7, (i), (ii)] if and
only if α̂ is group-theoretically verticial [cf. [CmbGC],
Definition 1.4, (iv)] (respectively, group-theoretically cusp-
idal [cf. [CmbGC], Definition 1.4, (iv)]; group-theoretically
nodal [cf. [NodNon], Definition 1.12]; graphic [cf. [CmbGC],
Definition 1.4, (i)]).

(ii) The outer isomorphism α is graphic if and only if α is group-
theoretically verticial, group-theoretically cuspidal, and
group-theoretically nodal.
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Proof. Assertion (ii) follows immediately, in light of Corollary 2.18,
from a similar argument to the argument applied in the proof of [CmbGC],
Proposition 1.5, (ii). Thus, it remains to verify assertion (i). The neces-
sity portion of assertion (i) follows immediately from Proposition 2.5,
(v). Next, let us observe that inclusions of verticial subgroups of the
fundamental group of a semi-graph of temperoids of HSD-type are nec-
essarily equalities [cf. Corollary 2.18, (i), (ii)]; a similar statement holds
concerning inclusions of edge-like subgroups [cf. Corollary 2.18, (iii)].
Thus, the sufficiency portion of assertion (i) follows immediately —
in light of assertion (ii) and [CmbGC], Proposition 1.5, (ii) — from
Corollary 2.17, (ii). This completes the proof of Corollary 2.19. �

Corollary 2.20 (Discrete combinatorial cuspidalization). Let
Σ ⊆ Primes be a subset which is either equal to Primes or of cardinal-
ity one, (g, r) a pair of nonnegative numbers such that 2g − 2 + r > 0,
n a positive integer, and X a topological surface of type (g, r) [i.e., the
complement of r distinct points in an orientable compact topological
surface of genus g]. For each positive integer i, write Xi for the i-th
configuration space of X [i.e., the topological space obtained by forming
the complement of the various diagonals in the direct product of i copies
of X ]; Πi for the topological fundamental group of Xi; Π

Σ
i for the pro-Σ

completion of Πi; Π̂i for the profinite completion of Πi;

OutFC(Πi) ⊆ OutF(Πi) ⊆ Out(Πi)

for the subgroups of the group Out(Πi) of outomorphisms of Πi defined
in the statement of [CmbCsp], Corollary 5.1 [cf. also the discussion
entitled “Topological groups” in [CbTpI], §0];

OutFC(ΠΣ
i ) ⊆ OutF(ΠΣ

i ) ⊆ Out(ΠΣ
i )

for the subgroups of the group Out(ΠΣ
i ) of outomorphisms of ΠΣ

i con-
sisting of FC-admissible, F-admissible [cf. [CmbCsp], Definition 1.1,
(ii); the discussion entitled “Topological groups” in [CbTpI], §0] outo-
morphisms, respectively. Then the following hold:

(i) The group Πn is normally terminal in ΠΣ
n [cf. Proposition 2.5,

(iii)]. In particular, the natural homomorphism

OutF(Πn) −→ OutF(ΠΣ
n )

is injective. In the following, we shall regard subgroups of
OutF(Πn) as subgroups of OutF(ΠΣ

n ).

(ii) It holds that OutF(Πn) ∩OutFC(Π̂n) = OutFC(Πn).
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(iii) Consider the commutative diagram

OutF(Πn+1) −−−→ OutF(Π̂n+1)⏐⏐� ⏐⏐�
OutF(Πn) −−−→ OutF(Π̂n)

— where the horizontal arrows are the injections of (i), and
the vertical arrows are the homomorphisms induced by the pro-
jection Xn+1 → Xn obtained by forgetting the (n+1)-st factor.
Suppose that the right-hand vertical arrow of the diagram is
injective [cf. Remark 2.20.1 below]. Then the commutative
diagram of the above display is cartesian. In particular, the
left-hand vertical arrow of the diagram is injective.

(iv) The image of the left-hand vertical arrow of the commuta-
tive diagram of (iii) [where we do not impose the assumption
that the right-hand vertical arrow be injective] is contained in
OutFC(Πn) ⊆ OutF(Πn).

(v) Consider the commutative diagram

OutFC(Πn+1) −−−→ OutFC(Π̂n+1)⏐⏐� ⏐⏐�
OutFC(Πn) −−−→ OutFC(Π̂n)

— where the horizontal arrows are the injections induced by
the injections of (i), and the vertical arrows are the homo-
morphisms induced by the projection Xn+1 → Xn obtained by
forgetting the (n+1)-st factor. This diagram is cartesian, its
right-hand vertical arrow is injective, and its left-hand verti-
cal arrow is bijective.

(vi) Write

nFC
def
=

⎧⎨
⎩

2 if (g, r) = (0, 3),
3 if (g, r) �= (0, 3) and r �= 0,
4 if r = 0.

Suppose that n ≥ nFC. Then it holds that

OutFC(Πn) = OutF(Πn);

the left-hand vertical arrow

OutF(Πn+1) −→ OutF(Πn)

of the commutative diagram of (iii) is bijective.

Proof. Let us first observe that, to verify assertion (i), it suffices to
verify that Πn is normally terminal in ΠΣ

n . Moreover, once one proves
the desired normal terminality in the case where n = 1, the desired
normal terminality in the case where n ≥ 2 follows immediately by
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induction [cf. the proof of [CmbCsp], Corollary 5.1, (i)]. Thus, we
conclude that, to verify assertion (i), it suffices to verify the normal
terminality of Π1 in ΠΣ

1 .
Next, we claim that the following assertion holds:

Claim 2.20.A: Let F be a free nonabelian group. Then
F is normally terminal in the pro-Σ completion of F .

Indeed, since F is conjugacy l-separable [cf. [Prs], Theorem 3.2] for
every l ∈ Σ, Claim 2.20.A follows from a similar argument to the
argument applied in the proof of [André], Lemma 3.2.1. This completes
the proof of Claim 2.20.A.
Next, let us observe that one verifies easily that there exist a semi-

graph of temperoids of HSD-type G and an isomorphism of Π1 with the
fundamental group ΠG of G. In the following, we shall identify ΠG with
Π1 by means of such an isomorphism. If G has a cusp, then it follows
from Remark 2.5.1 that Π1 is a free nonabelian group. Thus, the desired
normal terminality follows from Claim 2.20.A. In the remainder of the
proof of assertion (i), suppose that G has no cusp. In particular, we may
assume without loss of generality, by applying a suitable specialization
outer isomorphism [cf. Proposition 2.10], that G has a node. Let γ̂ ∈
NΠΣ

1
(Π1) be an element of the normalizer of Π1 in ΠΣ

1 and Πv ⊆ ΠG a

verticial subgroup of ΠG. Then, by applying Corollary 2.17, (ii) [i.e., in
the case where we take the “(G,H,ΠzH ,ΠzG , γ̂)” of Corollary 2.17 to be
(G,G,Πv,Πv, γ̂) and the “α̃” of Corollary 2.17 to be the automorphism
of ΠG obtained by conjugation by γ̂], we conclude immediately [cf. also
Corollary 2.18, (i), (ii)] that we may assume without loss of generality,
by multiplying γ̂ by a suitable element of ΠG, that the element γ̂ ∈ ΠΣ

1

normalizes Πv, hence also the closure Πv of Πv in ΠΣ
1 . In particular,

it follows from Proposition 2.5, (v); [CmbGC], Proposition 1.2, (ii),
that γ̂ ∈ Πv. On the other hand, since G has a node, it follows from
Proposition 2.5, (iv), and Remark 2.6.1 that Πv is a free nonabelian
group, and Πv may be identified with the pro-Σ completion of Πv.
Thus, it follows from Claim 2.20.A that γ̂ ∈ Πv ⊆ ΠG, as desired. This
completes the proof of assertion (i).
Assertion (ii) follows immediately from Corollary 2.19, (i). Next, we

verify assertion (iii). Let us first observe that since [we have assumed
that] the right-hand vertical arrow of the diagram of assertion (iii) is
injective, it follows immediately from assertion (i) that all arrows of the
diagram of assertion (iii) are injective. Let α ∈ OutF(Πn) be such that

the image of α in OutF(Π̂n) lies in the image of the right-hand vertical
arrow of the diagram of assertion (iii). Then it follows from [CbTpI],

Theorem A, (ii), that the image of α in OutF(Π̂n) is FC-admissible.
Thus, it follows from assertion (ii) that α ∈ OutFC(Πn). In particular,
it follows from [NodNon], Corollary 6.6, that there exists a uniquely
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determined element of OutFC(Πn+1) whose image in OutF(Πn) coin-
cides with α ∈ OutF(Πn). Thus, since all arrows of the diagram of
assertion (iii) are injective [as verified above], we conclude that the
diagram of assertion (iii) is cartesian. This completes the proof of as-
sertion (iii). Assertion (iv) follows immediately from [CbTpI], Theorem
A, (ii), together with assertion (ii). Assertion (v) follows immediately
from a similar argument to the argument applied in the proof of asser-
tion (iii), together with the injectivity portion of [NodNon], Theorem
B. Assertion (vi) follows immediately from [CbTpII], Theorem A, (ii),
together with assertions (i), (ii), (v). This completes the proof of Corol-
lary 2.20. �

Remark 2.20.1. It follows from [CbTpII], Theorem A, (i), that if
either n �= 1 or r �= 0, then the right-hand vertical arrow of the diagram
of Corollary 2.20, (iii), is injective.

Remark 2.20.2. In the notation of Corollary 2.20, the bijectivity of
the left-hand vertical arrow OutFC(Πn+1) → OutFC(Πn) of the diagram
of Corollary 2.20, (v), is proven in [NodNon], Corollary 6.6, by apply-
ing, in essence, a well-known result concerning topological surfaces due
to Dehn-Nielsen-Baer [cf. the proof of [CmbCsp], Corollary 5.1, (ii)].
On the other hand, the equivalences of Corollary 2.19, (i) [cf. also the
injection of Corollary 2.20, (i)], together with a similar argument to the
argument applied in the proof of the bijectivity portion of [NodNon],
Theorem B — i.e., in essence, the argument applied in the proof of
[CmbCsp], Corollary 3.3 — allow one to give a purely algebraic alter-
native proof of this bijectivity result in the case where n ≥ max{3, nFC}
[cf. Corollary 2.20, (vi)].

Corollary 2.21 (Discrete/profinite Dehn multi-twists). In the

situation of Example 2.4, (i), write ĜXlog for the semi-graph of an-
abelioids of pro-Primes PSC-type of Proposition 2.5, (iii), in the case
where we take “(G,Σ)” to be (GXlog ,Primes); ΠG

Xlog
, ΠĜ

Xlog
for the

respective fundamental groups of GXlog , ĜXlog ; Π̂G
Xlog

for the profi-

nite completion of ΠG
Xlog

[so we have a natural outer isomorphism

Π̂G
Xlog

∼→ ΠĜ
Xlog

— cf. Proposition 2.5, (iii)];

Dehn(GX log) ⊆ Out(ΠG
Xlog

)

for the subgroup consisting of the Dehn multi-twists of GXlog , i.e., of
α ∈ Out(ΠG

Xlog
) such that the following conditions are satisfied:

(a) α is graphic [cf. Definition 2.7, (ii)] and induces the identity
automorphism on the underlying semi-graph of GXlog .
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(b) Let Πv ⊆ ΠG
Xlog

be a verticial subgroup of ΠG
Xlog

. Then the

outomorphism of Πv induced by restricting α [cf. (a); Corol-
lary 2.18, (v); the evident discrete analogue of [CbTpII], Lemma
3.10] is trivial.

Then the following hold:

(i) The composite of natural outer homomorphisms

ΠG
Xlog

−→ Π̂G
Xlog

∼−→ ΠĜ
Xlog

determines an injection

Out(ΠG
Xlog

) ↪→ Out(ΠĜ
Xlog

).

(ii) If one regards subgroups of Out(ΠG
Xlog

) as subgroups of Out(ΠĜ
Xlog

)

by means of the injection of (i), then the equality

Dehn(GX log) = Dehn(ĜXlog) ∩Out(ΠG
Xlog

)

[cf. [CbTpI], Definition 4.4] holds.
(iii) The homomorphism of the final display of Example 2.4, (i), de-

termines, relative to the natural outer isomorphism π1(X
log
an (C)|s)∼→ ΠG

Xlog
, an isomorphism

π1(S
log
an (C))

∼−→ Dehn(GXlog)

of free Z-modules of rank Node(GXlog)�. Moreover, the image
of this isomorphism is dense, relative to the profinite topology,

in Dehn(ĜXlog).

Proof. Assertion (i) follows from Corollary 2.20, (i). Next, we verify

assertion (ii). The inclusion Dehn(GXlog) ⊆ Dehn(ĜXlog) ∩Out(ΠG
Xlog

)
follows immediately from the various definitions involved. To verify the

reverse inclusion, let α ∈ Dehn(ĜXlog) ∩ Out(ΠG
Xlog

). Then it follows

immediately from Corollary 2.19, (i), together with the definition of

Dehn(ĜXlog), that the outomorphism α of ΠG
Xlog

satisfies the condition

(a) in the statement of Corollary 2.21. Moreover, it follows immediately
from Proposition 2.5, (v), and Corollary 2.20, (i), together with the

definition of Dehn(ĜXlog), that the outomorphism α of ΠG
Xlog

satisfies

the condition (b) in the statement of Corollary 2.21. This completes
the proof of assertion (ii).

Finally, we verify assertion (iii). First, let us observe that it fol-
lows immediately from the various definitions involved that the ho-
momorphism of the final display of Example 2.4, (i), factors through
Dehn(GXlog) and has dense image [i.e., relative to the profinite topology]

in Dehn(ĜX log) [cf. [CbTpI], Proposition 5.6, (ii)]. Next, let us recall
from [CbTpI], Theorem 4.8, (ii), (iv), that if, for e ∈ Node(GXlog) =

Node(ĜXlog), we write Se
def
= Node(GXlog) \ {e} and (GXlog)∧�Se

for the
semi-graph of anabelioids of pro-Primes PSC-type of Proposition 2.5,
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(iii), in the case where we take “(G,Σ)” to be ((GXlog)�Se ,Primes)
[cf. Definition 2.9] and regard Dehn((GXlog)∧�Se

) as a closed subgroup

of Dehn(ĜXlog) via the specialization outer isomorphism of [CbTpI],
Definition 2.10 [cf. also Remark 2.9.1, Proposition 2.10 of the present
paper], then we have an equality

Dehn(ĜXlog) =
⊕

e∈Node(G
Xlog )

Dehn((GXlog)∧�Se
)

— where each direct summand is [noncanonically] isomorphic to Ẑ.
Here, we note that these specialization outer isomorphisms are compat-
ible [cf. [CbTpI], Proposition 5.6, (ii), (iii), (iv)] with the corresponding
homomorphisms of the final display of Example 2.4, (i). Thus, in light
of the density assertion that has already been verified, one verifies im-
mediately that, to complete the verification of assertion (iii), it suffices
to verify that the image of Dehn(GXlog) via the projection to any di-
rect summand of the direct sum decomposition of the above display is
contained in some submodule of the direct summand that is isomor-
phic to Z. To this end, let us recall from [CbTpI], Theorem 4.8, (iv),
that such an image via a projection to a direct summand may be com-
puted by considering the homomorphism of the first display of [CbTpI],
Lemma 4.6, (ii), i.e., which determines an isomorphism between the di-

rect summand under consideration and any profinite nodal subgroup Π̂e

associated to the node e corresponding to the direct summand. On the
other hand, it follows immediately — in light of the definition of this
isomorphism — from Proposition 2.5, (v); Corollary 2.17, (i), that the
image of Dehn(GXlog) under consideration is contained in a suitable
discrete nodal subgroup Πe (∼= Z) associated to e [cf. Remark 2.6.1].
This completes the proof of assertion (iii). �

Definition 2.22. Suppose that Σ = Primes. Let (g, r) be a pair of
nonnegative integers such that 2g − 2 + r > 0; n a positive integer;

k
def
= C; Slog def

= Spec(k)log the log scheme obtained by equipping S
def
=

Spec(k) with the log structure determined by the fs chart N → k that

maps 1 	→ 0; X log = X log
1 a stable log curve of type (g, r) over Slog. For

each [possibly empty] subset E ⊆ {1, . . . , n}, write
X log

E

for the E�-th log configuration space of the stable log curve X log [cf.
the discussion entitled “Curves” in [CbTpI], §0], where we think of
the factors as being labeled by the elements of E ⊆ {1, . . . , n} [cf. the
discussion at the beginning of [CbTpII], §3, in the case where (Σ, k) =
(Primes,C)]. For each nonnegative integer n and each [possibly empty]

subset E ⊆ {1, . . . , n}, write (X log
E )an → Slog

an for the morphism of fs log



82 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

analytic spaces determined by the morphism X log
E → Slog; (X log

E )an(C),
Slog
an (C) for the respective topological spaces “X log” defined in [KN],

(1.2), in the case where we take the “X” of [KN], (1.2), to be (X log
E )an,

Slog
an [cf. the notation established in Example 2.4, (i)]. Let s ∈ Slog

an (C).
Write

XE
def
= (X log

E )an(C)|s
for the fiber of the natural morphism (X log

E )an(C) → Slog
an (C) at s;

Πdisc
E

def
= π1(XE)

for the discrete topological fundamental group of XE;

Xn
def
= X{1,...,n}; X

def
= X1; Πdisc

n
def
= Πdisc

{1,...,n}.

Thus, for sets E ′ ⊆ E ⊆ {1, . . . , n}, we have a projection

panE/E′ : XE → XE′

obtained by forgetting the factors that belong to E \ E ′. For sets
E ′ ⊆ E ⊆ {1, . . . , n} and nonnegative integers m ≤ n, write

pΠ
disc

E/E′ : Πdisc
E � Πdisc

E′

for some fixed surjection [that belongs to the collection of surjections
that constitutes the outer surjection] induced by panE/E′ ;

Πdisc
E/E′

def
= Ker(pΠ

disc

E/E′) ⊆ Πdisc
E

pann/m
def
= pan{1,...,n}/{1,...,m} : Xn −→ Xm;

pΠ
disc

n/m
def
= pΠ

disc

{1,...,n}/{1,...,m} : Π
disc
n � Πdisc

m ;

Πdisc
n/m

def
= Πdisc

{1,...,n}/{1,...,m} ⊆ Πdisc
n .

Finally, we shall write “Π̂disc
(−)” for the profinite completion of “Πdisc

(−)”.
Thus, we have a natural outer isomorphism

Π̂disc
E

∼−→ ΠE

— where ΠE is as in the discussion at the beginning of [CbTpII], §3.
In the following, we shall also write X log

n
def
= X log

{1,...,n}; Πn
def
= Π{1,...,n}.

Definition 2.23. In the notation of Definition 2.22, let i ∈ E ⊆
{1, . . . , n}; x ∈ Xn(C) a C-valued geometric point of the underlying
scheme Xn of X log

n .

(i) We shall write
Gdisc

for the semi-graph of temperoids of HSD-type associated to
X log [cf. Example 2.4, (ii)];

Gdisc
i∈E,x
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for the semi-graph of temperoids of HSD-type associated to
the geometric fiber [cf. Example 2.4, (ii); Remark 2.4.1] of the

projection plogE/(E\{i}) : X
log
E → X log

E\{i} over xlogE\{i} → X log
E\{i} [cf.

[CbTpII], Definition 3.1, (i)];

ΠGdisc , ΠGdisc
i∈E,x

for the respective fundamental groups of Gdisc, Gdisc
i∈E,x [cf. Propo-

sition 2.5, (i)];

Π̂Gdisc
i∈E,x

for the profinite completion of ΠGdisc
i∈E,x

. Thus, it follows from

the discussion of Remark 2.5.2 that we have a natural graphic
[cf. [CmbGC], Definition 1.4, (i)] outer isomorphism

Π̂Gdisc
i∈E,x

∼−→ ΠGi∈E,x

— where Gi∈E,x is the semi-graph of anabelioids of pro-Primes
PSC-type of [CbTpII], Definition 3.1, (iii) — and hence a nat-
ural isomorphism of semi-graphs of anabelioids

Ĝdisc
i∈E,x

∼−→ Gi∈E,x

— where we write Ĝdisc
i∈E,x for the semi-graph of anabelioids

of pro-Primes PSC-type of Proposition 2.5, (iii), in the case
where we take “(G,Σ)” to be (Gdisc

i∈E,x,Primes). Moreover, it
follows immediately from the discussion of Example 2.4 that
we have a natural Πdisc

E -orbit [i.e., relative to composition with
automorphisms induced by conjugation by elements of Πdisc

E ]
of isomorphisms

(Πdisc
E ⊇) Πdisc

E/(E\{i})
∼−→ ΠGdisc

i∈E,x
.

One verifies immediately from the various definitions involved
that the diagram

Π̂disc
E/(E\{i})

∼−−−→ Π̂Gdisc
i∈E,x


⏐⏐� ⏐⏐�

ΠE/(E\{i})
∼−−−→ ΠGi∈E,x

— where the upper horizontal arrow is an element of the Π̂disc
E -

orbit of isomorphisms induced by the Πdisc
E -orbit of isomor-

phisms of the above discussion; the lower horizontal arrow is
an element of the ΠE-orbit of isomorphisms of [CbTpII], Def-
inition 3.1, (iii); the left-hand vertical arrow is the isomor-
phism obtained by forming the restriction of an isomorphism

Π̂disc
E

∼→ ΠE that belongs to the outer isomorphism of the fi-
nal display of Definition 2.22; the right-hand vertical arrow is
an isomorphism that belongs to the outer isomorphism of the
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above discussion — commutes up to composition with auto-
morphisms induced by conjugation by elements of ΠE.

(ii) We shall say that a vertex v ∈ Vert(Gdisc
i∈E,x) is a(n) [E-]tripod

of Xn if v is of type (0, 3) [cf. Definition 2.6, (iii)]. Thus, one
verifies easily that v ∈ Vert(Gdisc

i∈E,x) is a(n) [E-]tripod if and
only if the corresponding vertex of Gi∈E,x via the graphic outer

isomorphism Π̂Gdisc
i∈E,x

∼→ ΠGi∈E,x
of (i) is a(n) [E-]tripod of X log

n

[cf. [CbTpII], Definition 3.1, (v)]. We shall refer to a verticial
subgroup of ΠGdisc

i∈E,x
associated to a(n) [E-]tripod of Xn as a(n)

[E-]tripod of Πdisc
n .

(iii) Let P be a property of [E-]tripods of Πn [cf. [CbTpII], Defi-
nition 3.3, (i)] or X log

n [e.g., the property of being strict — cf.
[CbTpII], Definition 3.3, (iii); the property of arising from an
edge — cf. [CbTpII], Definition 3.7, (i); the property of being
central — cf. [CbTpII], Definition 3.7, (ii)]. Then we shall say
that a(n) [E-]tripod of Πdisc

n or Xn [cf. (ii)] satisfies P if the
corresponding [E-]tripod of Πn or X log

n satisfies P.
(iv) Let T ⊆ Πdisc

E be an E-tripod of Πdisc
n [cf. (ii)]. Then one may

define the subgroups

OutC(T ), OutC(T )cusp, OutC(T )Δ, OutC(T )Δ+ ⊆ Out(T )

of Out(T ) in an entirely analogous fashion to the definition of
the closed subgroups “OutC(T )”, “OutC(T )cusp”, “OutC(T )Δ”,
“OutC(T )Δ+” of “Out(T )” given in [CbTpII], Definition 3.4,
(i). We leave the routine details to the reader.

Theorem 2.24 (Outomorphisms preserving tripods). In the no-
tation of Definition 2.22, let E ⊆ {1, . . . , n} be a subset and T ⊆ Πdisc

E

an E-tripod of Πdisc
n [cf. Definition 2.23, (ii)]. Let us write

OutF(Πdisc
n )[T ] ⊆ OutF(Πdisc

n )

for the subgroup of OutF(Πdisc
n ) [cf. the notational conventions intro-

duced in the statement of Corollary 2.20] consisting of α ∈ OutF(Πdisc
n )

such that the outomorphism of Πdisc
E determined by α preserves the

Πdisc
E -conjugacy class of T ⊆ Πdisc

E ;

OutFC(Πdisc
n )[T ]

def
= OutF(Πdisc

n )[T ] ∩OutFC(Πdisc
n ) ⊆ OutFC(Πdisc

n )

[cf. the notational conventions introduced in the statement of Corol-

lary 2.20]; Π
def
= Π1; Πdisc def

= Πdisc
1 ; OutC(Πdisc)

def
= OutFC(Πdisc);

OutC(Π)
def
= OutFC(Π). Then the following hold:

(i) Write T̂ for the profinite completion of T . Then the natural
homomorphism

Out(T ) −→ Out(T̂ )
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is injective. If, moreover, one regards subgroups of Out(T )

as subgroups of Out(T̂ ) via this injection, then it holds that

OutC(T ) = OutC(T̂ ) ∩Out(T ),

OutC(T )cusp = OutC(T̂ )cusp ∩Out(T ),

OutC(T )Δ = OutC(T̂ )Δ ∩Out(T ),

OutC(T )Δ+ = OutC(T̂ )Δ+ ∩Out(T )

[cf. Definition 2.23, (iv); [CbTpII], Definition 3.4, (i)].
(ii) It holds that

OutC(T )cusp = OutC(T )Δ = OutC(T )Δ+ ∼= Z/2Z,

OutC(T ) ∼= Z/2Z×S3

— where we write S3 for the symmetric group on 3 letters.
(iii) The commensurator and centralizer of T ∈ Πdisc

E satisfy the
equality

CΠdisc
E

(T ) = T × ZΠdisc
E

(T ).

Thus, by applying the evident discrete analogue of [CbTpII],
Lemma 3.10, to outomorphisms of Πdisc

E determined by ele-
ments of OutF(Πdisc

n )[T ], one obtains a natural homomorphism

TT : OutF(Πdisc
n )[T ] −→ Out(T ).

(iv) Suppose that n ≥ 3, and that T is central [cf. Definition 2.23,
(iii)]. Then it holds that

OutF(Πdisc
n ) = OutF(Πdisc

n )[T ].

Moreover, the homomorphism

TT : OutF(Πdisc
n ) = OutF(Πdisc

n )[T ] −→ Out(T )

of (iii) determines a surjection

OutFC(Πdisc
n ) � OutC(T )Δ+ (∼= Z/2Z).

We shall refer to this homomorphism as the tripod homo-
morphism associated to Πdisc

n .

(v) The profinite completion T̂ determines an E-tripod of Πn,

which, by abuse of notation, we denote by T̂ . Now suppose
that T is E-strict [cf. Definition 2.23, (iii)]. Then it holds
that

OutF(Πdisc
n )[T ] = OutF(Πn)[T̂ ] ∩OutF(Πdisc

n )

[cf. [CbTpII], Theorem 3.16].
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(vi) Suppose that the semi-graph of anabelioids of pro-Primes PSC-
type G associated to X log [cf. [CbTpII], Definition 3.1, (ii)] is
totally degenerate [cf. [CbTpI], Definition 2.3, (iv)]. Re-
call that G may be naturally identified with the semi-graph of
anabelioids of pro-Primes PSC-type determined by Gdisc [cf.
Proposition 2.5, (iii); the discussion of Definition 2.23, (i)].
Then one has an equality

Aut(Gdisc)− = Aut(G) ∩ OutC(Πdisc)− (⊆ OutC(Π))

— where the superscript “−’s” denote the closure in the profi-
nite topology — of subgroups of OutC(Π) [cf. Corollary 2.20,
(i)].

Proof. First, we verify assertion (i). The injectivity portion of asser-
tion (i) follows from Corollary 2.20, (i). The first equality follows from
Corollary 2.20, (ii). Thus, the second and third equalities follow imme-
diately from the various definitions involved; the fourth equality follows
from Corollary 2.20, (v). This completes the proof of assertion (i).
Next, we verify assertion (ii). The inclusions OutC(T )Δ+ ⊆ OutC(T )Δ

⊆ OutC(T )cusp follow from assertion (i), together with [CbTpII], Lemma
3.5. The inclusion OutC(T )cusp ⊆ OutC(T )Δ+ and the assertion that
OutC(T )cusp ∼= Z/2Z follow immediately from [CmbCsp], Corollary 5.3,
(i), together with a classical result of Nielsen [cf. [CmbCsp], Remark
5.3.1]. This completes the proof of the first line of the display of as-
sertion (ii). Now since OutC(T )Δ = OutC(T )cusp, by considering the
action of OutC(T ) on the set of the T -conjugacy classes of cuspidal
inertia subgroups of T , we obtain an exact sequence

1 −→ OutC(T )Δ −→ OutC(T ) −→ S3 −→ 1.

By considering outomorphisms of T arising from automorphisms of
analytic spaces, one obtains a section of this sequence; moreover, it
follows from the definition of OutC(T )Δ that this section determines

an isomorphism OutC(T )Δ×S3
∼→ OutC(T ). This completes the proof

of assertion (ii).
Next, we verify assertion (iii). Recall that every finite index subgroup

of T is normally terminal in its profinite completion [cf. Corollary 2.20,
(i)] and center-free [cf. Remark 2.6.1]. Thus, assertion (iii) follows
immediately from [CbTpII], Theorem 3.16, (i). This completes the
proof of assertion (iii).
Next, we verify assertion (iv). First, let us observe that it fol-

lows immediately from the definition of the notion of a central tri-
pod [cf. Definition 2.23, (iii); [CbTpII], Definition 3.7, (ii)] that we
may assume without loss of generality that n = 3. To verify the
equality of the first display of assertion (iv), we mimick the argu-
ment in the profinite case given in the proof of [CmbCsp], Corollary
1.10, (i): Let α ∈ OutF(Πdisc

n ), α̃ ∈ Aut(Πdisc
n ) a lifting of α. Write
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α̃2 ∈ Aut(Πdisc
2 ) for the automorphism induced by α̃. Now observe that

since α ∈ OutF(Πdisc
n ), it follows immediately from Corollary 2.20, (iv),

that α̃2 determines an element of OutFC(Πdisc
2 ), hence that α̃2 preserves

the Πdisc
2 -conjugacy class of inertia groups associated to the diagonal

cusp of any of the fibers of pan2/1 [cf. Definition 2.22; the discussion of

[CmbCsp], Remark 1.1.5]. Thus, by replacing α̃ by the composite of
α̃ with a suitable inner automorphism, we may assume without loss
of generality that α̃2 preserves the inertia group associated to some
diagonal cusp of a fiber of pan2/1. Now the fact that α ∈ OutF(Πdisc

n )[T ]

follows immediately from Corollary 2.17, (ii); [CbTpII], Theorem 1.9,
(ii) [cf. the application of [CmbCsp], Proposition 1.3, (iv), in the proof
of [CmbCsp], Corollary 1.10, (i)]. The assertion that the restriction to
OutFC(Πdisc

n ) of the homomorphism OutF(Πdisc
n ) → Out(T ) of assertion

(iii) factors through OutC(T )Δ+ ⊆ Out(T ) follows immediately from
from assertions (i) and (ii), together with [CbTpII], Theorem 3.16,
(v). The assertion that the resulting homomorphism is surjective fol-
lows immediately from the fact that the [unique] nontrivial element of
OutC(T )Δ+ is the outomorphism induced by complex conjugation [cf.
[CmbCsp], Remark 5.3.1], together with the [easily verified] fact that
the pointed stable curve over C corresponding to the given stable log
curve X log may be assumed, without loss of generality — i.e., by apply-
ing a suitable specialization isomorphism [cf. the discussion preceding
[CmbCsp], Definition 2.1, as well as [CbTpI], Remark 5.6.1] and ob-
serving that such specialization isomorphisms are compatible with the
various discrete fundamental groups involved [cf. Remarks 2.9.1 and
2.10.1] — to be defined over R. This completes the proof of assertion
(iv).
Next, we verify assertion (v). It follows immediately from the clas-

sification of E-strict tripods given in [CbTpII], Lemma 3.8, (ii), that
we may assume without loss of generality that E� = n ≤ 3. When
n = 3, assertion (v) follows formally from assertion (iv). When n = 1,
assertion (v) follows immediately from Corollary 2.17, (ii). Thus, it
remains to consider the case where n = 2, i.e., where the tripod T
arises from an edge. In this case, assertion (v) follows from a similar
argument to the argument applied in the proof of assertion (iv). That
is to say, let α ∈ OutF(Πdisc

2 ), α̃ ∈ Aut(Πdisc
2 ) a lifting of α. Write

α̃1 ∈ Aut(Πdisc
1 ) for the automorphism induced by α̃; β̃1 ∈ Aut(Π1),

β̃ ∈ Aut(Π2) for the automorphisms determined by α̃. Then we must

verify that α ∈ OutF(Πdisc
2 )[T ] under the assumption that β̃ deter-

mines an element β ∈ OutF(Π2)[T̂ ]. Now observe that it follows im-
mediately from the computation of the centralizer given in [CbTpII],

Lemma 3.11, (vii), that β̃1 preserves the Π1-conjugacy class of edge-like
subgroups of Π1 determined by the edge that gives rise to the tripod
T . Thus, we conclude from Corollary 2.17, (ii), that, by replacing α̃
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by the composite of α̃ with a suitable inner automorphism, we may
assume that α̃1 preserves a specific edge-like subgroup of Πdisc

1 corre-
sponding to the edge that gives rise to the tripod T . Note that this
assumption implies, in light of the commensurably terminality of edge-

like subgroups [cf. [CmbGC], Proposition 1.2, (ii)], that β̃ preserves the

Π2/1-conjugacy class of the tripod T̂ . In particular, we conclude, as in
the proof of assertion (iv), i.e., by applying Corollary 2.17, (ii), that
α ∈ OutF(Πdisc

2 )[T ], as desired. This completes the proof of assertion
(v).

Finally, we verify assertion (vi). First, let us observe that it follows
immediately from Corollary 2.20, (v), that both sides of the equality
in question are ⊆ OutFC(Πdisc

3 )− ⊆ OutFC(Π3) (⊆ OutC(Π)). Also, we
observe that, by considering the case where X log is defined over R [cf.
the proof of assertion (iv)], it follows immediately that both sides of the
equality in question surject, via the tripod homomorphism of assertion
(iv), onto the finite group of order two that appears as the image of
this tripod homomorphism [cf. also the fact that the topological group

Out(T̂ ) is profinite, hence, in particular, Hausdorff]. In particular, to
complete the proof of assertion (v), it suffices to verify that the evident
inclusion

Aut(Gdisc)−∩OutFC(Π3)
geo ⊆ Aut(G) ∩ OutC(Πdisc)− ∩ OutFC(Π3)

geo

— where we write OutFC(Π3)
geo ⊆ OutFC(Π3) for the kernel of the

tripod homomorphism on OutFC(Π3) [cf. [CbTpII], Definition 3.19]
— of subgroups of OutC(Π) is, in fact, an equality. On the other
hand, since Dehn(G) is a normal open subgroup of both Aut(Gdisc)− ∩
OutFC(Π3)

geo and Aut(G) ∩ OutC(Πdisc)− ∩ OutFC(Π3)
geo [cf. Corol-

lary 2.21, (iii); [CbTpI], Theorem 4.8, (i); the commutative diagram of
[CbTpII], Corollary 3.27, (ii)], and Aut(Gdisc)− ∩ OutFC(Π3)

geo clearly
surjects onto the finite group of automorphisms of the underlying semi-
graph of Gdisc, the desired equality follows immediately from [CbTpII],
Corollary 3.27, (ii). This completes the proof of assertion (vi). �

Remark 2.24.1. It is not clear to the authors at the time of writing
whether or not one can remove the strictness assumption imposed in
Theorem 2.24, (v). Indeed, from the point of view of induction on
n, the essential difficulty in removing this assumption may already be
seen in the case of a non-E-strict tripod when E� = n = 2. From
another point of view, this difficulty may be thought of as arising from
the lack of an analogue for discrete topological fundamental groups of
n-th configuration spaces, when n ≥ 2, of Corollary 2.17.
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Remark 2.24.2.

(i) In the notation of Theorem 2.24, let us observe that it follows
from Corollary 2.19, (i), that we have an equality

Aut(Gdisc) = Aut(G) ∩ OutC(Πdisc) (⊆ OutC(Π))

of subgroups of OutC(Π) [cf. Corollary 2.20, (i)]. On the other
hand, it is by no means clear whether or not the evident inclu-
sion

Aut(Gdisc)− ⊆ Aut(G) ∩ OutC(Πdisc)− (⊆ OutC(Π)) (∗)
— where the superscript “−’s” denote the closure in the profi-
nite topology — is an equality in general. On the other hand,
when X log is totally degenerate, this equality is the content
of Theorem 2.24, (vi).

(ii) We continue to use the notation of (i). Write MQ for the
moduli stack of hyperbolic curves of type (g, r) over Q and
CQ → MQ for the tautological hyperbolic curve overMQ. Thus,

for appropriate choices of basepoints, if we write ΠC
def
= π1(CQ),

ΠM
def
= π1(MQ) for the respective étale fundamental groups,

then we obtain an exact sequence of profinite groups

1 −→ ΔC/M −→ ΠC −→ ΠM −→ 1

— where ΔC/M is defined so as to render the sequence exact
— as well as a natural outer representation

ρM : ΠM −→ OutC(Π)

— where, by choosing appropriate basepoints, we identify Π
with ΔC/M — and a natural outer surjection

ΠM � GQ

onto the absolute Galois group GQ of Q [cf. the discussion of
[CbTpII], Remark 3.19.1]. Write GR ⊆ GQ for the decomposi-
tion group [which is well-defined up to GQ-conjugation] of the
unique archimedean prime of Q. In the spirit of [Bgg1], [Bgg2],
[Bgg3], let us write

Γ
def
= OutC(Πdisc) (⊆ OutC(Π)); Γ̌

def
= ρM(ΠM ×GQ

GR)

[cf. Corollary 2.20, (i)]. Thus, for appropriate choices of base-
points, Γ̌ is equal to the closure of Γ in OutC(Π). If σ is a sim-
plex of the complex of profinite curves L(Π) studied in [Bgg1],
[Bgg2], [Bgg3], that arises from Πdisc, then the stabilizer in Γ
of σ is denoted Γσ, while the stabilizer in Γ̌ of the image of σ in
the profinite curve complex corresponding to Γ̌ is denoted Γ̌σ.
Then [Bgg3], Theorem 4.2 [cf. also [Bgg1], Proposition 6.5],
asserts that



90 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

The natural inclusion Γ−
σ ⊆ Γ̌σ is, in fact, an

equality.
Translated into the language of the present paper, this asser-
tion corresponds precisely to the assertion that the inclusion
(∗) considered in (i) is, in fact, an equality. In particular, The-
orem 2.24, (vi), corresponds, essentially, to a special case [i.e.,
the totally degenerate case] of [Bgg3], Theorem 4.2. At a more
concrete level, when Node(G)� = 1, and σ arises from a single
simple closed curve that corresponds to the unique node e of
G, this assertion corresponds precisely to the assertion that

the profinite stabilizer in Γ̌ of the Π-conjugacy
class of nodal subgroups of Π determined by e coin-
cides with the closure in Γ̌ of the discrete stabilizer
in Γ of the Πdisc-conjugacy class of nodal subgroups
of Πdisc determined by e

— cf. Theorem 3.3, Remark 3.3.1, Corollary 3.4 in §3 below.
As discussed in (i), this sort of assertion is highly nontriv-
ial. That is to say, this sort of coincidence between a profinite
stabilizer and the closure of a corresponding discrete stabilizer
is, in fact, false in general, as the example given in (iv) be-
low demonstrates. In particular, this sort of coincidence is by
no means a consequence of superficial “general nonsense”-type
considerations, but rather, when true [cf., e.g., the case treated
in Theorem 2.24, (vi)], a consequence of deep properties of the
specific groups and specific spaces [on which these groups act]
under consideration.

(iii) In closing, we observe that many of the results derived
in [Bgg3] as a consequence of the assertion discussed in (ii)
were, in fact, already obtained in earlier papers by the authors.
Indeed, the faithfulness asserted in [Bgg3], Theorem 7.7 — i.e.,
the injectivity of the restriction of ρM to a section GF ↪→ ΠM
arising from a hyperbolic curve of type (g, r) defined over a
number field F — is a special case of [NodNon], Theorem C.
On the other hand, in [CbTpI], Theorem D, a computation is
given of the centralizer in OutC(Π) of an open subgroup of Γ̌.
Thus, the computation of centers given in [Bgg3], Corollary
6.2, amounts to a special case of [CbTpI], Theorem D. Finally,
[Bgg3], Corollary 7.6 — which may be regarded as the assertion
that the inverse image via ρM of the centralizer of Γ̌ in OutC(Π)
maps trivially to GQ — amounts to a concatenation of

• the computation of the centralizer given in [CbTpI], The-
orem D, with

• the fact, stated in [NodNon], Corollary 6.4, that ρ−1
M(Γ̌)

maps trivially to GQ.
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(iv) Let n ≥ 3 be an integer. Consider the natural conjuga-
tion action of the special linear group SLn(Z) with coefficients
∈ Z on the module Mn(Z) of n by n matrices with coefficients
∈ Z. Write A ∈ Mn(Z) for the diagonal matrix whose entries
are given by the integers 1, . . . , n. Then one verifies immedi-
ately that the stabilizer

SLn(Z)A

of A, relative to the conjugacy action of SLn(Z), is equal to the
subgroup of diagonal matrices of SLn(Z), hence isomorphic to
the finite group given by a product of n− 1 copies of the finite
group of order two {±1}. On the other hand, if one considers

the action of the special linear group SLn(Ẑ) with coefficients

∈ Ẑ on the module Mn(Ẑ) of n by n matrices with coefficients

∈ Ẑ, then one verifies immediately that the stabilizer

SLn(Ẑ)A

of A, relative to the conjugacy action of SLn(Ẑ), is equal to

the subgroup of diagonal matrices of SLn(Ẑ), hence isomorphic

to a product of n − 1 copies of Ẑ×, a group of uncountable
cardinality. That is to say,

The profinite stabilizer SLn(Ẑ)A is much larger
than the profinite completion of the discrete stabi-
lizer SLn(Z)A.

Here, we recall that since, as is well-known, the congruence
subgroup problem has been resolved in the affirmative, in the

case of n ≥ 3, the topological group SLn(Ẑ) may be identified
with the profinite completion of the group SLn(Z). A simi-
lar example may be given in the case of the symplectic group
Sp2n(Z).

Corollary 2.25 (Characterization of the archimedean local Ga-
lois groups in the global Galois image associated to a hyper-
bolic curve). Let F be a number field [i.e., a finite extension of
the field of rational numbers]; p an archimedean prime of F ; F p an
algebraic closure of the p-adic completion Fp of F [so F p is isomor-

phic to C]; F ⊆ F p the algebraic closure of F in F p; X
log
F a smooth

log curve over F . Write Gp
def
= Gal(F p/Fp) ⊆ GF

def
= Gal(F/F );

X log

F

def
= X log

F ×F F ; X
log
Fp

def
= X log

F ×F Fp; X
log

F p

def
= X log

F ×F F p;

π1(X
log

F
)
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for the log fundamental group of X log

F
;

πdisc
1 (X log

F p
)

for the [discrete] topological fundamental group of the analytic

space associated to the interior of the log scheme X log

F p
;

πdisc
1 (X log

F p
)∧

for the profinite completion of πdisc
1 (X log

F p
);

ρX log
F

: GF −→ Out(π1(X
log

F
))

for the natural outer Galois action associated to X log
F ;

ρdisc
Xlog

F ,p
: Gp −→ Out(πdisc

1 (X log

F p
))

for the natural outer Galois action associated to X log
Fp

. Thus, we have
a natural outer isomorphism

πdisc
1 (X log

F p
)∧

∼−→ π1(X
log

F
),

which determines a natural injection

Out(πdisc
1 (X log

F p
)) ↪→ Out(π1(X

log

F
))

[cf. Corollary 2.20, (i)]. Then the following hold:

(i) We have a natural commutative diagram

Gp

ρdisc
X

log
F

,p−−−−→ Out(πdisc
1 (X log

F p
))⏐⏐� ⏐⏐�

GF

ρ
X

log
F−−−→ Out(π1(X

log

F
))

— where the vertical arrows are the natural inclusions, and all
arrows are injective.

(ii) The diagram of (i) is cartesian, i.e., if we regard the various

groups involved as subgroups of Out(π1(X
log

F
)), then we have

an equality

Gp = GF ∩Out(πdisc
1 (X log

F p
)).

Proof. Assertion (i) follows immediately from the injectivity of the
lower horizontal arrow ρXlog

F
[cf. [NodNon], Theorem C], together with

the various definitions involved.
Finally, we verify assertion (ii). Write (XF )

log
3 for the 3-rd log con-

figuration space of X log

F
. Then it follows immediately from [NodNon],

Theorem B, that the group OutFC(π1((XF )
log
3 )) of FC-admissible outo-

morphisms of the log fundamental group π1((XF )
log
3 ) of (XF )

log
3 may be
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regarded as a closed subgroup of Out(π1(X
log

F
)). Moreover, it follows

immediately from the various definitions involved that the respective
images Im(ρXlog

F
), Im(ρdisc

X log
F ,p

) of the natural outer Galois actions ρXlog
F
,

ρdisc
Xlog

F ,p
associated to X log

F , X log
Fp

are contained in this closed subgroup

OutFC(π1((XF )
log
3 )) ⊆ Out(π1(X

log

F
)). Thus, to verify assertion (ii),

one verifies immediately from Corollary 2.20, (v), that it suffices to
verify the equality

Im(ρdisc
Xlog

F ,p
) = Im(ρXlog

F
) ∩Out(πdisc

1 ((XF p
)log3 ))

— where we write (XF p
)log3

def
= (XF )

log
3 ×F F p and π

disc
1 ((XF p

)log3 ) for the

[discrete] topological fundamental group of the analytic space associated

to the interior of the log scheme (XF p
)log3 . On the other hand, since

the “ρXlog
F
” that occurs in the case where we take “X log

F ” to be the

smooth log curve associated to P1
F \ {0, 1,∞} is injective [cf. assertion

(i)], this equality follows immediately — by considering the images of
the subgroups

Im(ρdisc
Xlog

F ,p
) ⊆ Im(ρX log

F
) ∩Out(πdisc

1 ((XF p
)log3 ))

of Out(πdisc
1 ((XF p

)log3 )) via the [manifestly compatible!] tripod homo-

morphisms associated to πdisc
1 ((XF p

)log3 ) [cf. Theorem 2.24, (iv)] and

π1((XF )
log
3 ) [cf. [CbTpII], Theorem 3.16, (i), (v)] — from [André], The-

orem 3.3.1. This completes the proof of assertion (ii), hence also of
Corollary 2.25. �

Remark 2.25.1. Corollary 2.25 is a generalization of [André], Theo-
rem 3.3.2 [cf. also the footnote of [André] following [André], Theorem
3.3.2]. Although the proof given here of Corollary 2.25 is by no means
the first proof of this result [cf. the discussion of this footnote of [André]
following [André], Theorem 3.3.2; [NodNon], Corollary 6.4], it is of in-
terest to note that this result may also be derived in the context of
the theory of the present paper, i.e., via an argument that parallels the
proof given in [CbTpIII] of [CbTpIII], Theorem B, in the p-adic case
[for which no alternative proofs are known!].
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3. Canonical liftings of cycles

In the present §3, we discuss certain canonical liftings of cycles [cf.
Theorems 3.10, 3.14 below]. These canonical liftings are constructed in
a fashion illustrated in Figure 1. This approach to constructing such
canonical liftings was motivated [cf. Remark 3.10.1 below] by the ar-
guments of [Bgg2], where these canonical liftings were applied, in the
context of the congruence subgroup problem for hyperelliptic modular
groups, to derive certain injectivity results [cf. [Bgg2], §2], which may
be regarded as special cases of [NodNon], Theorem B. Unfortunately,
however, the authors of the present paper were unable to follow in detail
these arguments of [Bgg2], which appear to be based to a substantial
extent on geometric intuition concerning the geometry of topological
surfaces. Although, in the development of the present series of pa-
pers on combinatorial anabelian geometry, the authors were motivated
by similar geometric intuition, the proofs of the results given in the
present series of papers proceed by means of purely combinatorial and
algebraic arguments concerning combinatorial [e.g., graphs] and group-
theoretic [e.g., profinite fundamental groups] data that arises from a
pointed stable curve. From the point of view of arithmetic geome-
try, the geometric intuition which underlies the topological arguments
given in [Bgg2] involving objects such as topological Dehn twists is of an
essentially archimedean nature, hence, in particular, is fundamentally
incompatible, at least from the point of view of establishing a rigorous
mathematical formulation, with the highly nonarchimedean properties
of profinite fundamental groups, as studied in the present series of
papers — cf. the discussion of [SemiAn], Remark 1.5.1. It was this
state of affairs that motivated the authors to give, in the present §3,
a formulation of the constructions of [Bgg2], §2, in terms of the purely
combinatorial and algebraic techniques developed in the present series
of papers.
In the present §3, let (g, r) be a pair of nonnegative integers such that

2g− 2 + r > 0; n a positive integer; Σ a set of prime numbers which is
either equal to the entire set of prime numbers or of cardinality one; k

an algebraically closed field of characteristic �∈ Σ; Slog def
= Spec(k)log the

log scheme obtained by equipping S
def
= Spec(k) with the log structure

determined by the fs chart N → k that maps 1 	→ 0; X log = X log
1

a stable log curve of type (g, r) over Slog. For each [possibly empty]
subset E ⊆ {1, . . . , n}, write

X log
E

for the E�-th log configuration space of the stable log curve X log [cf.
the discussion entitled “Curves” in [CbTpI], §0], where we think of the
factors as being labeled by the elements of E ⊆ {1, . . . , n};

ΠE
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for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
E ) � π1(S

log);

plogE/E′ : X
log
E → X log

E′ , p
Π
E/E′ : ΠE � ΠE′ ,

ΠE/E′
def
= Ker(pΠE/E′) ⊆ ΠE, X

log
n

def
= X log

{1,...,n}, Πn
def
= Π{1,...,n},

plogn/m

def
= plog{1,...,n}/{1,...,m} : X

log
n −→ X log

m ,

pΠn/m
def
= pΠ{1,...,n}/{1,...,m} : Πn � Πm,

Πn/m
def
= Π{1,...,n}/{1,...,m} ⊆ Πn,

G, G, ΠG, Gi∈E,x, ΠGi∈E,x

for the objects defined in the discussion at the beginning of [CbTpII],
§3; [CbTpII], Definition 3.1. In addition, we suppose that we have been
given a pair of nonnegative integers (Yg, Yr) such that 2Yg− 2+ Yr > 0

and a stable log curve Y log = Y log
1 of type (Yg, Yr) over Slog. We shall

use similar notation

Y log
E , YΠE,

YplogE/E′ : Y
log
E → Y log

E′ ,
YpΠE/E′ : YΠE � YΠE′ ,

YΠE/E′
def
= Ker(YpΠE/E′) ⊆ YΠE, Y

log
n

def
= Y log

{1,...,n},
YΠn

def
= YΠ{1,...,n},

Yplogn/m

def
= Yplog{1,...,n}/{1,...,m} : Y

log
n −→ Y log

m ,

YpΠn/m
def
= YpΠ{1,...,n}/{1,...,m} :

YΠn � YΠm,

YΠn/m
def
= YΠ{1,...,n}/{1,...,m} ⊆ YΠn,

YG, YG, ΠYG,
YGi∈E,y, ΠYGi∈E,y

for objects associated to the stable log curve Y log = Y log
1 to the nota-

tion introduced above for X log [cf. the discussion at the beginning of
[CbTpII], §3; [CbTpII], Definition 3.1].

Lemma 3.1 (Graphicity in the case of a single node). In the
notation of the discussion at the beginning of the present §3, suppose
that Node(G)� = Node(YG)� = 1. Write

e ∈ Node(G) (respectively, Ye ∈ Node(YG))
for the unique node of G (respectively, YG). Let Πe ⊆ Π1 (respectively,

ΠYe ⊆ YΠ1) be a nodal subgroup of Π1
∼→ ΠG (respectively, YΠ1

∼→ ΠYG)
associated to e ∈ Node(G) (respectively, Ye ∈ Node(YG)); e2 ∈ X2(k)
(respectively, Ye2 ∈ Y2(k)) a k-valued point of the underlying scheme

X2 (respectively, Y2) of the log scheme X log
2 (respectively, Y log

2 ) that

lies, relative to plog2/1 (respectively, Yplog2/1), over the k-valued point of X

(respectively, Y ) determined by the node e ∈ Node(G) (respectively,
Ye ∈ Node(YG)). Thus, we obtain an outer isomorphism

Π2/1
∼−→ ΠG2∈{1,2},e2

(respectively, YΠ2/1
∼→ ΠYG

2∈{1,2},Ye2
)
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[cf. [CbTpII], Definition 3.1, (iii)] that may be characterized, up to

composition with elements of Aut|grph|(G2∈{1,2},e2) ⊆ Out(ΠG2∈{1,2},e2
)

(respectively, Aut|grph|(YG2∈{1,2},Ye2) ⊆ Out(ΠYG
2∈{1,2},Ye2

)) [cf. [CbTpI],

Definition 2.6, (i); [CbTpII], Remark 4.1.2], as the group-theoretically
cuspidal [cf. [CmbGC], Definition 1.4, (iv)] outer isomorphism such
that the semi-graph of anabelioids structure on G2∈{1,2},e2 (respectively,
YG2∈{1,2},Ye2) is the semi-graph of anabelioids structure determined [cf.
[NodNon], Theorem A] by the resulting composite outer representa-
tion

Πe ↪→ Π1 → Out(Π2/1)
∼→ Out(ΠG2∈{1,2},e2

)

(respectively, ΠYe ↪→ YΠ1 → Out(YΠ2/1)
∼→ Out(ΠYG

2∈{1,2},Ye2
))

— where the second arrow is the outer action determined by the exact
sequence 1 → Π2/1 → Π2 → Π1 → 1 (respectively, 1 → YΠ2/1 → YΠ2 →
YΠ1 → 1) — in a fashion compatible with the restriction Π2/1 � Π{2}
(respectively, YΠ2/1 � YΠ{2}) of pΠ{1,2}/{2} (respectively, YpΠ{1,2}/{2}) to

Π2/1 ⊆ Π2 (respectively, YΠ2/1 ⊆ YΠ2) and the given outer isomor-

phisms Π{2}
∼→ Π1

∼→ ΠG (respectively, YΠ{2}
∼→ YΠ1

∼→ YΠG). Let

v ∈ Vert(G2∈{1,2},e2) (respectively, Yv ∈ Vert(YG2∈{1,2},Ye2))

be the {1, 2}-tripod [cf. [CbTpII], Definition 3.1, (v)] that arises
from e ∈ Node(G) (respectively, Ye ∈ Node(YG)) [cf. [CbTpII], Defini-
tion 3.7, (i)]; Πv ⊆ ΠG2∈{1,2},e2

∼← Π2/1 (respectively, ΠYv ⊆ ΠYG
2∈{1,2},Ye2∼← YΠ2/1) a {1, 2}-tripod in Π2 (respectively, YΠ2) associated to the tri-

pod v (respectively, Yv) [cf. [CbTpII], Definition 3.3, (i)];

α : ΠG
∼−→ ΠYG

an outer isomorphism of profinite groups. Suppose that the following
conditions are satisfied:

(a) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12], i.e., determines a bijection of the
set of ΠG-conjugates of Πe ⊆ ΠG and the set of ΠYG-conjugates
of ΠYe ⊆ ΠYG.

(b) The outer isomorphism α is 2-cuspidalizable [cf. [CbTpII],
Definition 3.20], i.e., the outer isomorphism

Π1
∼−→ ΠG

α
∼−→ ΠYG

∼←− YΠ1

arises from a [uniquely determined, up to permutation of the
2 factors — cf. [NodNon], Theorem B] PFC-admissible [cf.

[CbTpI], Definition 1.4, (iii)] outer isomorphism Π2
∼→ YΠ2.

[In particular, the outer isomorphism α is group-theoretically
cuspidal.]

Then the following hold:
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(i) There exists a PFC-admissible isomorphism α̃2 : Π2
∼→ YΠ2

that lifts α such that the composite

ΠG2∈{1,2},e2
∼←− Π2/1

∼−→ YΠ2/1
∼−→ ΠYG

2∈{1,2},Ye2

— where the second arrow is the restriction of α̃2 — is graphic
[cf. [CmbGC], Definition 1.4, (i)].

(ii) The outer isomorphism α2 : Π2
∼→ YΠ2 determined by the iso-

morphism α̃2 of (i) induces a bijection between the set of Π2-
conjugates of Πv ⊆ Π2 and the set of YΠ2-conjugates of ΠYv ⊆
YΠ2. Moreover, if we think of Πv, ΠYv as the respective [pro-Σ]
fundamental groups of G2∈{1,2},e2 |v, YG2∈{1,2},Ye2 |Yv [cf. [CbTpI],
Definition 2.1, (iii); [CbTpI], Remark 2.1.1], then the induced

outer isomorphism Πv
∼→ ΠYv [cf. [CbTpII], Theorem 3.16, (i)]

is group-theoretically cuspidal.
(iii) The outer isomorphism α is graphic.

Proof. In light of conditions (a) and (b), assertion (i) follows immedi-
ately from [NodNon], Theorem A [cf. also our assumption that Node(G)�
= Node(YG)� = 1, which implies that the outer representation Πe →
Out(ΠG2∈{1,2},e2

) (respectively, ΠYe → Out(ΠYG
2∈{1,2},Ye2

)) is nodally non-

degenerate!]. Next, let us observe that the ΠG2∈{1,2},e2
- (respectively,

ΠYG
2∈{1,2},Ye2

-) conjugacy class of Πv ⊆ ΠG2∈{1,2},e2
(respectively, ΠYv ⊆

ΠYG
2∈{1,2},Ye2

) may be characterized as the unique ΠG2∈{1,2},e2
- (respectively,

ΠYG
2∈{1,2},Ye2

-) conjugacy class of verticial subgroups that fails to map

injectively via the surjection Π2/1 � Π{2} (respectively,
YΠ2/1 � YΠ{2}).

Now assertion (ii) follows immediately from assertion (i). Assertion (iii)
follows immediately — in light of [CmbCsp], Proposition 1.2, (iii) —
from assertions (i), (ii), together with the various definitions involved.
This completes the proof of Lemma 3.1. �

Before proceeding, we pause to observe that Lemma 3.1 may be
applied to obtain an alternative proof of a slightly weaker version of
Theorem 3.3 below, as follows.

Proposition 3.2 (Graphicity of group-theoretically nodal 2-cus-
pidalizable outer isomorphisms). In the notation of the discussion
at the beginning of the present §3, let

α : ΠG
∼−→ ΠYG

be an outer isomorphism of profinite groups. Suppose that the following
conditions are satisfied:

(a) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12].
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(b) The outer isomorphism α is 2-cuspidalizable [cf. [CbTpII],
Definition 3.20], i.e., the outer isomorphism

Π1
∼−→ ΠG

α
∼−→ ΠYG

∼←− YΠ1

arises from a [uniquely determined, up to permutation of the
2 factors — cf. [NodNon], Theorem B] PFC-admissible [cf.

[CbTpI], Definition 1.4, (iii)] outer isomorphism Π2
∼→ YΠ2.

[In particular, the outer isomorphism α is group-theoretically
cuspidal — cf. [CmbGC], Definition 1.4, (iv).]

Then the outer isomorphism α is graphic [cf. [CmbGC], Definition
1.4, (i)].

Proof. Let us first observe that it follows from condition (a), together
with [CmbGC], Proposition 1.2, (i), that α determines a bijection

Node(G) ∼→ Node(YG), so Node(G)� = Node(YG)�. We verify Propo-
sition 3.2 by induction on Node(G)� = Node(YG)�. If Node(G) =
Node(YG) = ∅, then Proposition 3.2 is immediate. Thus, we may
assume without loss of generality that Node(G), Node(YG) �= ∅. Let
e ∈ Node(G). Write Ye ∈ Node(YG) for the node of YG that corresponds,
via α, to e. Write G�{e} (respectively, YG�{Ye}) for the generization

of G (respectively, YG) with respect to {e} ⊆ Node(G) (respectively,
{Ye} ⊆ Node(YG)) [cf. [CbTpI], Definition 2.8]; β for the composite
outer isomorphism

ΠG�{e}

ΦG�{e}
∼−→ ΠG

α
∼−→ ΠYG

Φ−1
YG�{Ye}

∼−→ ΠYG�{Ye}

[cf. [CbTpI], Definition 2.10]; v0 ∈ Vert(G�{e}) (respectively, Yv0 ∈
Vert(YG�{Ye})) for the [uniquely determined] vertex of the generiza-

tion G�{e} (respectively, YG�{Ye}) that does not arise from a vertex

of Vert(G) (respectively, Vert(YG)). Let Πv0 ⊆ ΠG�{e} (respectively,

ΠYv0 ⊆ ΠYG�{Ye}
) be a verticial subgroup associated to v0 ∈ Vert(G�{e})

(respectively, Yv0 ∈ Vert(YG�{Ye})); Πe ⊆ Πv0 (respectively, ΠYe ⊆
ΠYv0) a subgroup that maps to a nodal subgroup associated to e in
ΠG (respectively, to Ye in ΠYG). Thus, it follows immediately from
[NodNon], Lemma 1.9, (i), (ii) [cf. also [NodNon], Lemma 1.5; con-
dition (2) of [CbTpI], Proposition 2.9, (i)], that Πv0 (respectively,
ΠYv0) may be characterized as the unique verticial subgroup of ΠG�{e}
(respectively, ΠYG�{Ye}

) that contains Πe (respectively, ΠYe).

Next, let us observe that, by applying the induction hypothesis to β,
we conclude that β is graphic. Thus, it follows immediately — in light
of [CmbGC], Proposition 1.5, (ii) — from the definition of the gener-
izations under consideration [cf. condition (3) of [CbTpI], Proposition
2.9, (i)] that, to complete the verification of Proposition 3.2, it suffices
to verify that the following assertion holds:
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Claim 3.2.A: Let H ⊆ Πv0 ⊆ ΠG�{e} be a closed sub-
group of Πv0 whose image in ΠG is a verticial subgroup.
Then the image of H via the composite

ΠG�{e}

β
∼−→ ΠYG�{Ye}

ΦYG�{Ye}
∼−→ ΠYG

is a verticial subgroup.

To verify Claim 3.2.A, let us observe that since β is graphic, it fol-
lows immediately from the above characterization of Πv0 , ΠYv0 that
β maps Πv0 bijectively onto a ΠYG�{Ye}

-conjugate of ΠYv0 . Thus, it

follows immediately from condition (b), together with the evident iso-
morphism [i.e., as opposed to outomorphism — cf. [CbTpII], Remark
4.14.1] version of [CbTpII], Lemma 4.8, (i), (ii), that, in the notation

of [CbTpII], Definition 4.3, the outer isomorphism Π2
∼→ YΠ2 of con-

dition (b) induces compatible outer isomorphisms (Πv0)2
∼→ (ΠYv0)2,

Πv0
∼→ ΠYv0 . In particular, by applying Lemma 3.1, (iii), to these outer

isomorphisms, one concludes that Claim 3.2.A holds, as desired. This
completes the proof of Proposition 3.2. �

Theorem 3.3 (Graphicity of profinite outer isomorphisms). Let
Σ0 be a nonempty set of prime numbers; H, J semi-graphs of anabe-
lioids of pro-Σ0 PSC-type; ΠH, ΠJ the [pro-Σ0] fundamental groups of
H, J , respectively;

α : ΠH
∼−→ ΠJ

an outer isomorphism of profinite groups. Then the following condi-
tions are equivalent:

(i) The outer isomorphism α is graphic [cf. [CmbGC], Definition
1.4, (i)].

(ii) The outer isomorphism α is group-theoretically verticial
and group-theoretically cuspidal [cf. [CmbGC], Definition
1.4, (iv)].

(iii) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12] and group-theoretically cuspi-
dal.

Proof. The implication (i) ⇒ (ii) (respectively, (ii) ⇒ (iii)) follows
from the various definitions involved (respectively, [NodNon], Lemma
1.9, (i)). Thus, it suffices to verify the implication (iii) ⇒ (i). Suppose
that condition (iii) holds. Then, to verify the graphicity of α, it follows
from [CmbGC], Theorem 1.6, (ii), that it suffices to verify that α is
graphically filtration-preserving [cf. [CmbGC], Definition 1.4, (iii)]. In
particular, by replacing ΠH, ΠJ by suitable open subgroups of ΠH, ΠJ ,
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it suffices to verify that α determines isomorphisms

Πab-edge
H

∼−→ Πab-edge
J , Πab-vert

H
∼−→ Πab-vert

J

— where we write “Πab-edge
(−) ”, “Πab-vert

(−) ” for the closed subgroups of

the abelianization “Πab
(−)” of “Π(−)” topologically generated by the im-

ages of the edge-like, verticial subgroups of “Π(−)”. Here, we may as-
sume without loss of generality that H and J are sturdy, hence admit
compactifications [cf. [CmbGC], Remarks 1.1.5, 1.1.6]. Now the asser-

tion concerning “Πab-edge
(−) ” follows immediately from condition (iii). On

the other hand, the assertion concerning “Πab-vert
(−) ” follows immediately

from the duality discussed in [CmbGC], Proposition 1.3, applied to the
compactifications ofH, J , together with condition (iii). This completes
the proof of Theorem 3.3. �

Remark 3.3.1. Here, we observe that results such as [Bgg3], Corol-
lary 6.1; [Bgg3], Corollary 6.4, (ii); [Bgg3], Theorem 6.6, amount, when
translated into the language of the present paper, to a special case of
the result obtained by concatenating the equivalence (i) ⇔ (iii) of The-
orem 3.3, with the computation of the normalizer given in [CbTpI],
Theorem 5.14, (iii) [i.e., in essence, [CmbGC], Corollary 2.7, (iii), (iv)].
Moreover, the proof given above of this equivalence (i) ⇔ (iii) of Theo-
rem 3.3 is, essentially, a restatement of various results from the theory
of [CmbGC]. That is to say, although the statements of these results
that occur in the present series of papers and in [Bgg3] are formulated
and arranged in a somewhat different way, the essential mathematical
content that underlies these results is, in fact, entirely identical; more-
over, this state of affairs is by no means a coincidence. Indeed, this
mathematical content is given in [CmbGC] as [CmbGC], Proposition
1.3; [CmbGC], Proposition 2.6. In [Bgg3], this mathematical content is
given as [Bgg3], Lemma 5.11 [and the surrounding discussion], which,
in fact, was related to the author of [Bgg3] by the senior author of
the present paper in the context of an explanation of the theory of
[CmbGC].

Corollary 3.4 (Graphicity of discrete outer isomorphisms). Let
H, J be semi-graphs of temperoids of HSD-type [cf. Definition 2.3,
(iii)]; ΠH, ΠJ the fundamental groups of H, J , respectively [cf. Propo-
sition 2.5, (i)];

α : ΠH
∼−→ ΠJ

an outer isomorphism. Then the following conditions are equivalent:

(i) The outer isomorphism α is graphic [cf. Definition 2.7, (ii)].
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(ii) The outer isomorphism α is group-theoretically verticial
and group-theoretically cuspidal [cf. Definition 2.7, (i)].

(iii) The outer isomorphism α is group-theoretically nodal and
group-theoretically cuspidal [cf. Definition 2.7, (i)].

Proof. This follows immediately from Theorem 3.3, together with Corol-
lary 2.19, (i). �

Definition 3.5. Let (YG, S ⊆ Node(YG), φ : YG�S
∼→ G) be a degener-

ation structure on G [cf. [CbTpII], Definition 3.23, (i)] and e ∈ S.

(i) We shall say that a closed subgroup J ⊆ Π1 of Π1 is a cycle-

subgroup of Π1 [with respect to (YG, S ⊆ Node(YG), φ : YG�S
∼→

G), associated to e ∈ S] if J is contained in the Π1-conjugacy
class of closed subgroups of Π1 obtained by forming the image
of a nodal subgroup of ΠYG associated to e via the composite
of outer isomorphisms

ΠYG

Φ−1
YG�S∼−→ ΠYG�S

∼−→ ΠG
∼−→ Π1

—where the first arrow is the inverse of the specialization outer
isomorphism ΦYG�S

[cf. [CbTpI], Definition 2.10], the second

arrow is the graphic outer isomorphism ΠYG�S

∼→ ΠG induced
by φ, and the third arrow is the natural outer isomorphism
ΠG

∼→ Π1 of [CbTpII], Definition 3.1, (ii) [cf. the left-hand
portion of Figure 1].

(ii) Let n be a positive integer. Then we shall say that a cycle-
subgroup of Π1 is n-cuspidalizable if it is a cycle-subgroup of Π1

with respect to some n-cuspidalizable degeneration structure
on G [cf. [CbTpII], Definition 3.23, (v)].

Remark 3.5.1. Let J ⊆ Π1 be a cycle-subgroup of Π1 with respect
to a degeneration structure (YG, S ⊆ Node(YG), φ : YG�S

∼→ G), associ-
ated to a node e ∈ S. Then it follows immediately from [CmbGC],
Proposition 1.2, (i), that the node e of YG is uniquely determined
by the subgroup J ⊆ Π1 and the degeneration structure (YG, S ⊆
Node(YG), φ : YG�S

∼→ G).

Definition 3.6. Let J ⊆ Π1 be a 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.5, (i), (ii)].

(i) It follows immediately from the various definitions involved
that we have data as follows:
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(a) a 2-cuspidalizable degeneration structure (YG, S ⊆ Node(YG),
φ : YG�S

∼→ G) on G [cf. [CbTpII], Definition 3.23, (i), (v)],

(b) an isomorphism YΠ1
∼→ Π1 that is compatible with the

composite of the display of Definition 3.5, (i) [cf. also
[CbTpII], Definition 3.1, (ii)], in the case where we take

the “(YG, S ⊆ Node(YG), φ : YG�S
∼→ G)” of Definition 3.5

to be the degeneration structure of (a),

(c) a PFC-admissible isomorphism YΠ2
∼→ Π2 that lifts the

isomorphism of (b), and
(d) a nodal subgroup Πe ⊆ YΠ1 of

YΠ1 associated to a [uniquely
determined — cf. Remark 3.5.1] node e of YG

such that the image of the nodal subgroup Πe ⊆ YΠ1 of (d)

via the isomorphism YΠ1
∼→ Π1 of (b) coincides with J ⊆ Π1.

We shall say that a closed subgroup T ⊆ Π2/1 of Π2/1 is a
tripodal subgroup associated to J if T coincides — relative to
some choice of data (a), (b), (c), (d) as above [but cf. also Re-

mark 3.6.1!] — with the image, via the lifting YΠ2
∼→ Π2 of

(c), of some {1, 2}-tripod in YΠ2/1 ⊆ YΠ2 [cf. [CbTpII], Def-
inition 3.3, (i)] arising from e [cf. [CbTpII], Definition 3.7,
(i)], and, moreover, the centralizer ZΠ2(T ) maps bijectively,
via pΠ2/1 : Π2 � Π1, onto J ⊆ Π1 [cf. [CbTpII], Lemma 3.11,

(iv), (vii)].
(ii) Let T ⊆ Π2/1 be a tripodal subgroup associated to J [cf. (i)].

Then we shall refer to a closed subgroup of T that arises
from a nodal (respectively, cuspidal) subgroup contained in the
{1, 2}-tripod in YΠ2/1 ⊆ YΠ2 of (i) as a lifting cycle-subgroup
(respectively, distinguished cuspidal subgroup) of T [cf. the right-
hand portion of Figure 1].

Remark 3.6.1. Note that, in the situation of Definition 3.6, (i), it fol-
lows immediately from Lemma 3.1, (ii) [i.e., by considering the gener-
ization of YG with respect to Node(YG) \ {e} — cf. [CbTpI], Definition
2.8], together with the computation of the centralizer given in [CbTpII],
Lemma 3.11, (vii), and the commensurable terminality of J ⊆ Π1 [cf.
[CmbGC], Proposition 1.2, (ii)], that the Π2/1-conjugacy class of a
tripodal subgroup T is completely determined by the cycle-subgroup
J ⊆ Π1.

Remark 3.6.2.

(i) Suppose that we are in the situation of Definition 3.5, (i). Re-
call the module ΛG, i.e., the cyclotome associated to G, defined
in [CbTpI], Definition 3.8, (i). Thus, as an abstract module,
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ΛG is isomorphic to the pro-Σ completion ẐΣ of Z. Recall, fur-
thermore, from [CbTpI], Corollary 3.9, (v), (vi), that one may
construct a natural, functorial {±}-orbit of isomorphisms

Πe
∼−→ ΛYG

— where Πe ⊆ YΠ1
∼→ ΠYG [cf. [CbTpII], Definition 3.1, (ii)]

denotes a nodal subgroup associated to e. Thus, by apply-
ing the natural, functorial [outer] isomorphisms ΛYG

∼→ ΛYG�S

[cf. [CbTpI], Corollary 3.9, (i)] and Φ−1
YG�S

: ΠYG
∼→ ΠYG�S

[cf.

[CbTpI], Definition 2.10], together with the [outer] isomor-

phisms ΛYG�S

∼→ ΛG and ΠYG�S

∼→ ΠG induced by φ, we obtain
a natural {±}-orbit of isomorphisms

J
∼−→ ΛG

associated to the cycle-subgroup J ⊆ Π1. Note that this {±}-
orbit of isomorphisms is functorial with respect to automor-
phisms α of Π1 such that α(J) = J , and, moreover, the outer
automorphism of ΠG obtained by forming the conjugate of α
by the natural outer isomorphism Π1

∼→ ΠG is graphic [cf. the
equivalence (i) ⇔ (iii) of Theorem 3.3]. In this context, it
is natural to refer to either of the two isomorphisms in this
{±}-orbit as an orientation on the cycle-subgroup J .

(ii) Now suppose that we are in the situation of Definition 3.6,
(i), (ii). Then let us observe that the natural outer surjec-

tion YΠ2/1 � YΠ{2}
∼→ YΠ1 determined by YpΠ{1,2}/{2} induces a

natural isomorphism

ΛYG2∈{1,2},e2
∼−→ ΛYG

[cf. [CbTpI], Corollary 3.9, (ii)], where we write e2 ∈ Y2(k)

for a k-valued point of Y2 that lies, relative to Yplog2/1, over the

k-valued point of Y determined by the node e. Write v for the
vertex of YG2∈{1,2},e2 that gives rise to the tripodal subgroup
T ⊆ Π2/1. Thus, we have a natural isomorphism

Λv
∼−→ ΛYG2∈{1,2},e2

[cf. [CbTpI], Corollary 3.9, (ii)]. Now suppose that e∗ is a
node of YG2∈{1,2},e2 that abuts to v and, moreover, gives rise
to a lifting cycle-subgroup J∗ ⊆ T of the tripodal subgroup
T . Thus, one verifies immediately that the natural outer sur-
jection Π2/1 � Π{2}

∼→ Π1 determined by pΠ{1,2}/{2} induces a

natural isomorphism J∗ ∼→ J [cf. [CbTpII], Lemma 3.6, (iv)].
Let Πe∗ ⊆ ΠYG2∈{1,2},e2

be a nodal subgroup associated to e∗.

Then the [unique!] branch of e∗ that abuts to v determines a
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natural isomorphism

Πe∗
∼−→ Λv

[cf. [CbTpI], Corollary 3.9, (v)]. Thus, by composing the iso-
morphisms of the last three displays with the isomorphism
ΛYG

∼→ ΛYG�S

∼→ ΛG discussed in (i) and the inverse of the

tautological isomorphism Πe∗
∼→ J∗, we obtain a natural iso-

morphism

J∗ ∼−→ ΛG

associated to the lifting cycle-subgroup J∗ ⊆ T . Note that
this natural isomorphism is functorial with respect to FC-
admissible automorphisms α2 of Π2 such that α2(J

∗) = J∗,
α2(T ) = T , and, moreover, the outer automorphism of ΠG ob-
tained by forming the conjugate, by the natural outer isomor-
phism Π1

∼→ ΠG, of the outer automorphism of Π1 determined
by α2 is graphic [cf. the equivalence (i) ⇔ (iii) of Theorem 3.3;
[CbTpII], Lemma 3.11, (vii)]. Finally, one verifies immediately
from the construction of the isomorphisms of [CbTpI], Corol-

lary 3.9, (v), that if one composes this isomorphism J∗ ∼→ ΛG
with the inverse of the natural isomorphism J∗ ∼→ J discussed
above, then the resulting isomorphism J

∼→ ΛG is an orienta-
tion on the cycle-subgroup J , in the sense of the discussion of
(i), and, moreover, that, if we define an orientation on the
tripodal subgroup T to be a choice of a T -conjugacy class of
lifting cycle-subgroups of T , then the resulting assignment{

orientations on T
}

−→
{
orientations on J

}
is a bijection [between sets of cardinality 2].

Lemma 3.7 (Induced outomorphisms of tripods). In the situa-
tion of Lemma 3.1, suppose that X log = Y log. Write c ∈ Cusp(G2∈{1,2},e2)
for the cusp arising from the diagonal divisor in X ×k X. Let Πc ⊆
ΠG2∈{1,2},e2

be a cuspidal subgroup of ΠG2∈{1,2},e2
associated to c. Write

αv
def
= TΠv(α2) ∈ Out(Πv)

[cf. Lemma 3.1, (ii); [CbTpII], Theorem 3.16, (i)] for the result of
applying the tripod homomorphism TΠv to α2. [Thus, it follows
immediately from Lemma 3.1, (ii), that αv ∈ OutC(Πv).] Suppose,
moreover, that the following condition is satisfied:

(c) The cuspidal subgroup Πc ⊆ ΠG2∈{1,2},e2
∼← Π2/1 is contained

in Πv.

Then the following hold:
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(i) Since Πv may be regarded as the “Π1” that occurs in the case
where we take “X log” to be the smooth log curve associated
to P1

k \ {0, 1,∞} [cf. [CbTpII], Remark 3.3.1], there exists a
uniquely determined outomorphism

ι ∈ Out(Πv)

of Πv that arises from an automorphism of P1
k\{0, 1,∞} over k

and induces a nontrivial automorphism of the set N (v). Write

|αv| def
= αv ∈ Out(Πv) (respectively, |αv| def

= ι◦αv ∈ Out(Πv))

if αv ∈ OutC(Πv)
cusp (respectively, �∈ OutC(Πv)

cusp) [cf. [CbTpII],
Definition 3.4, (i)]. Then it holds that |αv| ∈ OutC(Πv)

cusp.
(ii) Let Πtpd ⊆ Π3 be a central {1, 2, 3}-tripod of Π3 [cf. [CbTpII],

Definitions 3.3, (i); 3.7, (ii)]. Then every geometric [cf.

[CbTpII], Definition 3.4, (ii)] outer isomorphism Πtpd
∼→ Πv

satisfies the following condition: Let β ∈ Out(Π1)
∼→ Out(ΠG)

be an outomorphism of Π1
∼→ ΠG that is group-theoretically

nodal and 3-cuspidalizable, i.e., β ∈ Out(Π1) arises from
a(n) [uniquely determined — cf. [NodNon], Theorem B] FC-
admissible outomorphism β3 ∈ OutFC(Π3). Then the image

TΠtpd
(β3) ∈ Out(Πtpd)

[cf. [CbTpII], Definition 3.19] coincides — relative to the

outer isomorphism Πtpd
∼→ Πv under consideration — with

|βv| ∈ Out(Πv)

[cf. (i)], where we write βv
def
= TΠv(β3) ∈ Out(Πv). In particu-

lar, it holds that |βv| ∈ OutC(Πv)
Δ+ [cf. [CbTpII], Definition

3.4, (i)].

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). Let us first observe that the
inclusion |βv| ∈ OutC(Πv)

Δ follows immediately from the coincidence
of TΠtpd

(β3) with |βv|, relative to some specific geometric outer iso-

morphism Πtpd
∼→ Πv, together with the second displayed equality of

[CbTpII], Theorem 3.16, (v). The inclusion |βv| ∈ OutC(Πv)
Δ+ then

follows from [CbTpII], Lemma 3.5; [CbTpII], Theorem 3.17, (i) [ap-
plied in the case where we take the “(Π2, T, T

′)” of loc. cit. to be
(Π3/1,Πv,Πtpd)]. Moreover, it follows immediately from the various

definitions involved that the inclusion |βv| ∈ OutC(Πv)
Δ allows one to

conclude that the coincidence of TΠtpd
(β3) with |βv|, relative to some

specific geometric outer isomorphism Πtpd
∼→ Πv, implies the coinci-

dence of TΠtpd
(β3) with |βv|, relative to an arbitrary geometric outer

isomorphism Πtpd
∼→ Πv. Thus, to complete the verification of assertion

(ii), it suffices to verify the coincidence of TΠtpd
(β3) with |βv|, relative
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to the specific geometric outer isomorphism Πtpd
∼→ Πv whose exis-

tence is guaranteed by [CbTpII], Theorem 3.18, (ii). In the following

discussion, we fix this specific geometric outer isomorphism Πtpd
∼→ Πv.

Next, let us observe that if βv = |βv|, i.e., βv ∈ OutC(Πv)
cusp, then

it follows immediately from [CbTpII], Theorems 3.16, (v); 3.18, (ii),
that TΠtpd

(β3) ∈ Out(Πtpd) coincides with |βv| ∈ Out(Πv). Thus, to
complete the verification of assertion (ii), we may assume without loss
of generality that βv �= |βv|, i.e., that βv �∈ OutC(Πv)

cusp. Then let us
observe that collections of data consisting of smooth log curves that
[by gluing at prescribed cusps] give rise to a stable log curve whose
associated semi-graph of anabelioids [of pro-Σ PSC-type] is isomorphic
to G may be parametrized by a smooth, connected moduli stack. Thus,
one verifies easily that, by considering the étale fundamental groupoid
of this moduli stack, together with a suitable scheme-theoretic auto-
morphism of order 2 of a collection of data parametrized by this mod-
uli stack, one obtains a 3-cuspidalizable automorphism ξ ∈ Aut(G)
(↪→ Out(ΠG)) of G such that ξv [i.e., the “αv” that occurs in the case
where we take “α” to be ξ] coincides with ι. Thus, by applying the
portion of assertion (ii) that has already been verified to ξ ◦ β, we con-
clude that, to complete the verification of assertion (ii), it suffices to
verify that TΠtpd

(ξ3) = 1. On the other hand, this follows immediately
from the fact that ξ was assumed to arise from a scheme-theoretic au-
tomorphism [cf. also [CbTpII], Theorem 3.16, (v)]. This completes the
proof of assertion (ii) and hence of Lemma 3.7. �

Definition 3.8. Let J ⊆ Π1 be a 2-cuspidalizable cycle-subgroup [cf.
Definition 3.5, (i), (ii)]; let us fix associated data as in Definition 3.6,
(i), (a), (b), (c), (d). Relative to this data, suppose that T ⊆ Π2/1 is a
tripodal subgroup associated to J ⊆ Π1 [cf. Definition 3.6, (i)], and that
I ⊆ T is a distinguished cuspidal subgroup of T [cf. Definition 3.6, (ii)].
Note that this data, together with the log scheme structure of Y log,
allows one to speak of geometric [cf. [CbTpII], Definition 3.4, (ii)] out-
omorphisms of T . Then one verifies easily that there exists a uniquely
determined nontrivial geometric outomorphism of T that preserves the
T -conjugacy class of I. Thus, since I is commensurably terminal in T
[cf. [CmbGC], Proposition 1.2, (ii)], there exists a uniquely determined
I-conjugacy class of automorphisms of T that lifts this outomorphism
and preserves I ⊆ T . We shall refer to this I-conjugacy class of auto-
morphisms of T as the cycle symmetry associated to I.

Before proceeding, we pause to observe the following interesting “al-
ternative formulation” of the essential content of Lemma 3.7, (ii).
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Lemma 3.9 (Geometricity of conjugates of geometric outer
isomorphisms). Suppose that we are in the situation of [CbTpII],
Theorem 3.18, (ii), i.e., n ≥ 3, and T (respectively, T ′) is an E-
(respectively, E ′-) tripod of Πn for some subset E ⊆ {1, . . . , n} (re-

spectively, E ′ ⊆ {1, . . . , n}). Let φ : T
∼→ T ′ be a geometric [cf.

[CbTpII], Definition 3.4, (ii)] outer isomorphism. Then, for every
α ∈ OutFC(Πn)[T, T

′ : {|C|}], the composite of outer isomorphisms

T
TT (α)

∼−→ T
φ
∼−→ T ′

TT ′ (α)−1

∼−→ T ′

[cf. [CbTpII], Theorem 3.16, (i)] is equal to φ.

Proof. Let us first observe that the validity of Lemma 3.9 for some spe-
cific geometric outer isomorphism “φ” follows formally from the com-
mutative diagram of [CbTpII], Theorem 3.18, (ii). Thus, the validity
of Lemma 3.9 for an arbitrary geometric outer isomorphism “φ” follows
immediately from the equality of the first display of [CbTpII], Theorem
3.18, (i), i.e., the fact that TT (α) commutes with arbitrary geometric
outomorphisms of T . This completes the proof of Lemma 3.9. �

Remark 3.9.1. One verifies immediately that a similar argument to
the argument applied in the proof of Lemma 3.9 yields evident ana-
logues of Lemma 3.9 in the respective situations of [CbTpII], Theorem
3.17, (i), (ii).

Theorem 3.10 (Canonical liftings of cycles). In the notation of
the discussion at the beginning of the present §3, let I ⊆ Π2/1 ⊆ Π2

be a cuspidal inertia group associated to the diagonal cusp of a fiber
of plog2/1; Πtpd ⊆ Π3 a 3-central {1, 2, 3}-tripod of Π3 [cf. [CbTpII],

Definition 3.7, (ii)]; Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does

not arise from a cusp of a fiber of plog3/2; J
∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal

subgroups of Πtpd such that Itpd, J
∗
tpd, and J∗∗

tpd determine three dis-
tinct Πtpd-conjugacy classes of closed subgroups of Πtpd. [Note that
one verifies immediately from the various definitions involved that such
cuspidal subgroups Itpd, J

∗
tpd, and J

∗∗
tpd always exist.] For positive inte-

gers n ≥ 2, m ≤ n and α ∈ AutFC(Πn) [cf. [CmbCsp], Definition 1.1,
(ii)], write

αm ∈ AutFC(Πm)

for the automorphism of Πm determined by α;

AutFC(Πn, I) ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that β2(I) = I;

AutFC(Πn)
G ⊆ AutFC(Πn)
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for the subgroup consisting of β ∈ AutFC(Πn) such that the image of β
via the composite AutFC(Πn) � OutFC(Πn) ↪→ OutFC(Π1) → Out(ΠG)
— where the second arrow is the natural injection of [NodNon], Theo-
rem B, and the third arrow is the homomorphism induced by the natural
outer isomorphism Π1

∼→ ΠG — is graphic [cf. [CmbGC], Definition
1.4, (i)];

AutFC(Πn, I)
G def

= AutFC(Πn, I) ∩ AutFC(Πn)
G;

Cyclen(Π1)

for the set of n-cuspidalizable cycle-subgroups of Π1 [cf. Defini-
tion 3.5, (i), (ii)];

TpdI(Π2/1)

for the set of closed subgroups T ⊆ Π2/1 such that T is a tripodal sub-
group associated to some 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.6, (i)], and, moreover, I is a distinguished cuspidal
subgroup [cf. Definition 3.6, (ii)] of T . Then the following hold:

(i) Let n ≥ 2 be a positive integer, α ∈ AutFC(Πn, I)
G, J ∈

Cyclen(Π1), and T ∈ TpdI(Π2/1). Then it holds that

α1(J) ∈ Cyclen(Π1), α2(T ) ∈ TpdI(Π2/1).

Thus, AutFC(Πn, I)
G acts naturally on Cyclen(Π1), TpdI(Π2/1).

(ii) Let n ≥ 2 be a positive integer. Then there exists a unique
AutFC(Πn, I)

G-equivariant [cf. (i)] map

CI : Cycle
n(Π1) −→ TpdI(Π2/1)

such that, for every J ∈ Cyclen(Π1), CI(J) is a tripodal sub-
group associated to J . Moreover, for every α ∈ AutFC(Πn, I)

G

and J ∈ Cyclen(Π1), the isomorphism CI(J)
∼→ CI(α1(J))

induced by α2 maps every lifting cycle-subgroup [cf. Def-
inition 3.6, (ii)] of CI(J) bijectively onto a lifting cycle-
subgroup of CI(α1(J)).

(iii) Let n ≥ 3 be a positive integer. Then there exists an assign-
ment

Cyclen(Π1) � J 	→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms

Πtpd
∼→ CI(J) — such that

(a) synI,J maps Itpd bijectively onto I,
(b) synI,J maps the subgroups J∗

tpd, J
∗∗
tpd bijectively onto lift-

ing cycle-subgroups of CI(J), and
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(c) for α ∈ AutFC(Πn, I)
G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely de-
termined — cf. the commensurable terminality of Itpd in
Πtpd discussed in [CmbGC], Proposition 1.2, (ii)] Itpd-
conjugacy class of automorphisms of Πtpd that lifts TΠtpd

(α)
[cf. [CbTpII], Definition 3.19] and preserves Itpd; the lower
horizontal arrow is the I-conjugacy class of isomorphisms
induced by α2 [cf. (ii)] — commutes up to possible com-
position with the cycle symmetry of CI(α1(J)) associ-
ated to I [cf. Definition 3.8].

Finally, the assignment

J 	→ synI,J

is uniquely determined, up to possible composition with cy-
cle symmetries, by these conditions (a), (b), and (c).

(iv) Let n ≥ 3 be a positive integer, α ∈ AutFC(Πn, I)
G, and J ∈

Cyclen(Π1). Suppose that one of the following conditions is
satisfied:
(a) The FC-admissible outomorphism of Π3 determined by α3

is ∈ OutFC(Π3)
geo [cf. [CbTpII], Definition 3.19].

(b) Cusp(G) �= ∅.
(c) n ≥ 4.
Then there exists an automorphism β ∈ AutFC(Πn, I)

G such
that the FC-admissible outomorphism of Π3 determined by β3
is contained in OutFC(Π3)

geo, and, moreover, α1(J) = β1(J).
Finally, the diagram [of Itpd-, I-conjugacy classes of isomor-
phisms]

Πtpd Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))

— where the lower horizontal arrow is the isomorphism induced
by β2 [cf. (ii)] — commutes up to possible composition with
the cycle symmetry of CI(α1(J)) = CI(β1(J)) associated to
I.

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). The initial portion of assertion
(ii) follows immediately from the discussion of Remark 3.6.1, together
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with the fact that T is uniquely determined among its Π2/1-conjugates
by the condition I ⊆ T [cf. [CmbGC], Proposition 1.5, (i)]. The final
portion of assertion (ii) follows immediately from Lemma 3.1, (ii) [i.e.,
by considering a suitable generization operation, as in the discussion
of Remark 3.6.1]. This completes the proof of assertion (ii).
Next, we verify assertion (iii). Let us fix data

(YG, S ⊆ Node(YG), φ : YG�S
∼→ G); YΠ1

∼→ Π1;

YΠ2
∼→ Π2; Πe ⊆ YΠ1

for J ∈ Cyclen(Π1) as in Definition 3.6, (i), (a), (b), (c), (d), and let
YT ⊆ YΠ2/1 be a {1, 2}-tripod as in the discussion of Definition 3.6, (i).
Let YΠtpd ⊆ YΠ3 be a 3-central tripod of YΠ3. Here, we note that since
J ∈ Cyclen(Π1), and n ≥ 3, it follows that the above isomorphism
YΠ2

∼→ Π2 lifts to a PFC-admissible isomorphism YΠ3
∼→ Π3 that maps

YΠtpd to a Π3-conjugate of Πtpd [cf. [NodNon], Theorem B; [CbTpII],
Theorem 3.16, (v); [CbTpII], Remark 4.14.1].

Now one verifies immediately that, to verify the existence portion
of assertion (iii), by applying a suitable generization operation as in
the discussion of Remark 3.6.1, we may assume without loss of gen-
erality that Node(YG)� = 1 [an assumption that will be invoked when
we apply Lemma 3.7 in the argument to follow]. Then, by considering
the geometric [hence, in particular, C-admissible] outer isomorphism of
[CbTpII], Theorem 3.18, (ii), in the case where we take the “(T, T ′)”
of [CbTpII], Theorem 3.18, (ii), to be (YΠtpd,

YT ), we obtain an outer

isomorphism Πtpd
∼→ CI(J). Moreover, by considering the composite

of this outer isomorphism with a suitable geometric outomorphism of
Πtpd, we may assume without loss of generality that this outer iso-

morphism Πtpd
∼→ CI(J) maps the Πtpd-conjugacy class of Itpd to the

CI(J)-conjugacy class of I. Thus, since I is commensurably terminal
in CI(J) [cf. [CmbGC], Proposition 1.2, (ii)], we obtain a uniquely de-

termined I-conjugacy class of isomorphisms synI,J : Πtpd
∼→ CI(J) that

lifts the outer isomorphism just discussed and satisfies condition (a).
On the other hand, one verifies immediately from the various definitions
involved that synI,J also satisfies condition (b).
Next, we verify that synI,J satisfies condition (c). To this end, let us

observe that it follows immediately from the various definitions involved
[cf. also our assumption that Node(YG)� = 1], that α1(J) admits data
as in Definition 3.6, (i), (a), (b), (c), (d), such that

• the portion of this data that corresponds to the data of Defi-
nition 3.6, (i), (a), (d), is of the form

(YG, S ⊆ Node(YG), ψ : YG�S
∼→ G); Πe ⊆ YΠ1

for some isomorphism ψ : YG�S
∼→ G, and, moreover,
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• the composite

YΠ2
∼−→ Π2

α2∼−→ Π2
∼←− YΠ2

— where the first (respectively, third) arrow is the isomor-
phism arising from the data [cf. Definition 3.6, (i), (c)] for J
(respectively, α1(J)) ∈ Cyclen(Π1) under consideration — is
the identity automorphism.

Thus, to verify the assertion that synI,J satisfies condition (c), it suffices

to verify that the I-conjugacy class of isomorphisms “synI,J : Πtpd
∼→

CI(J)” constructed above from a fixed choice of data as in Defini-
tion 3.6, (i), (a), (b), (c), (d) does not depend on this choice of data.
On the other hand, this follows immediately from Lemma 3.7, (ii) [cf.
our assumption that Node(YG)� = 1].
Finally, we consider the final portion of assertion (iii) concerning

uniqueness. To this end, we observe that, by considering the case where
YG, as well as each of the branches of the underlying semi-graph of YG,
is defined over a number field F , it follows immediately, by considering
automorphisms α ∈ AutFC(Πn, I)

G that arise from scheme theory, that
given any element γ ∈ Out(Πtpd) that arises from an element of the
absolute Galois group of F , there exists an α ∈ AutFC(Πn, I)

G such that
α(J) = J and TΠtpd

(α) = γ. Thus, the uniqueness under consideration
follows immediately from the geometricity of elements of Out(Πtpd)
that commute with the image of the absolute Galois group of F , i.e., in
other words, from the Grothendieck Conjecture for tripods over number
fields [cf. [Tama1], Theorem 0.3; [LocAn], Theorem A]. This completes
the proof of assertion (iii).
Finally, we verify assertion (iv). If condition (a) is satisfied, then, by

taking the “β” of assertion (iv) to be α, we conclude that assertion (iv)
follows immediately from assertion (iii), together with the definition of
OutFC(Πn)

geo. Next, let us observe that, by applying assertion (iv) in
the case where condition (a) is satisfied, we conclude that, to verify
assertion (iv) in the case where either (b) or (c) is satisfied, it suffices
to verify that the following assertion holds:

Claim 3.10.A: Write

Out(Π1 ⊇ J) ⊆ Out(Π1)

for the subgroup of Out(Π1) consisting of outomor-
phisms of Π1 that preserve the Π1-conjugacy class of
J and

OutFC(Πn)
G def

= AutFC(Πn)
G/Inn(Πn) ⊆ OutFC(Πn).

Then every element of the image of the natural injec-
tion

OutFC(Πn)
G ↪→ OutFC(Π1)
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[cf. [NodNon], Theorem B] may be written as a prod-
uct of an element of the image of the natural injec-
tion OutFC(Πn)

geo ↪→ OutFC(Π1) and an element of

Out(Π1 ⊇ J)G
def
= Out(Π1 ⊇ J) ∩OutFC(Π1)

G.

To verify Claim 3.10.A, write OutFC(Πn, J)
G ⊆ OutFC(Πn)

G for the
subgroup of OutFC(Πn)

G obtained by forming the inverse image of the
closed subgroup Out(Π1 ⊇ J) ⊆ Out(Π1) via the natural injection
OutFC(Πn)

G ↪→ OutFC(Π1). Then one verifies immediately, by consid-
ering the exact sequence

1 −→ OutFC(Πn)
geo −→ OutFC(Πn)

TΠtpd−→ OutC(Πtpd)
Δ+ −→ 1

[cf. conditions (b), (c); [CbTpII], Definition 3.19; [CbTpII], Corollary
4.15], that, to verify Claim 3.10.A, it suffices to verify that the following
assertion holds:

Claim 3.10.B: The composite

OutFC(Πn, J)
G ↪→ OutFC(Πn)

TΠtpd� OutC(Πtpd)
Δ+

is surjective.

To verify Claim 3.10.B, let (YG, S ⊆ Node(YG), φ : YG�S
∼→ G) be an

n-cuspidalizable degeneration structure on G with respect to which J is
a cycle-subgroup such that YG is totally degenerate [cf. [CbTpI], Defini-
tion 2.3, (iv)]. [One verifies immediately that such a degeneration struc-
ture always exists.] Now let us identify OutFC(Πn) with OutFC(YΠn)
via a(n) [uniquely determined, up to permutation of the n factors —
cf. [NodNon], Theorem B] PFC-admissible [cf. [CbTpI], Definition 1.4,

(iii)] outer isomorphism Πn
∼→ YΠn that is compatible with the out-

omorphism of the display of Definition 3.5, (i) [cf. [CbTpII], Propo-
sition 3.24, (i)]. Then it follows immediately from the various defini-
tions involved that the closed subgroup OutFC(YΠn)

brch ⊆ OutFC(YΠn)
[cf. [CbTpII], Definition 4.6, (i)] is contained in the closed subgroup
OutFC(Πn, J)

G ⊆ OutFC(Πn). On the other hand, it follows immedi-
ately from the proof of [CbTpII], Corollary 4.15, that the composite

OutFC(YΠn)
brch ↪→ OutFC(YΠn) = OutFC(Πn)

TΠtpd� OutC(Πtpd)
Δ+

is surjective. This completes the proof of Claim 3.10.B, hence also of
assertion (iv) in the case where either (b) or (c) is satisfied. �

Remark 3.10.1.

(i) The content of Theorem 3.10, (iv), may be regarded, i.e., by
considering the various lifting cycle-subgroups involved, as a
formulation of the construction of the two sections discussed
in [Bgg2], Proposition 2.7 [which plays an essential role in the
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proof of [Bgg2], Theorem 2.4], in terms of the purely combina-
torial and algebraic techniques developed in the present series
of papers.

(ii) In this context, we observe in passing that [one verifies imme-
diately that] for arbitrary nonnegative integers g, r such that

• 3g − 3 + r > 0, and, moreover,
• if g = 0, then r is even,

there exists a stable log curve of type (g, r) which admits an
automorphism that is linear over the base scheme under con-
sideration and fixes a node of the stable log curve, but switches
the branches of this node. Thus, by considering the resulting
automorphism of the associated semi-graph of anabelioids of
pro-Σ PSC-type, one concludes that the diagrams of Theo-
rem 3.10, (iii), (iv), fail to commute, in general, if one does not
allow for the possibility of composition with a cycle symmetry.
This situation contrasts with the situation discussed in [Bgg2],
Proposition 2.7, where two independent sections are obtained,
by considering orientations on the various cycles involved.

(iii) The orientation-theoretic portion of [Bgg2], Proposition 2.7,
referred to in (ii) above may be interpreted, from the point of
view of the present paper, as a lifting “C±

I ” of the map CI of
Theorem 3.10, (ii), as follows. In the notation of Theorem 3.10,
let us write

• Cyclen(Π1)
± for the set of pairs consisting of a cycle-

subgroup J ∈ Cyclen(Π1) and an orientation on J [cf.
Remark 3.6.2, (i)];

• TpdI(Π2/1)
± for the set of pairs consisting of a tripodal

subgroup T ∈ TpdI(Π2/1) and an orientation on T [cf.
Remark 3.6.2, (ii)].

Thus, one has natural surjections Cyclen(Π1)
± � Cyclen(Π1),

TpdI(Π2/1)
± � TpdI(Π2/1), which may be regarded as torsors

over the group {±1}. Moreover, one verifies immediately from
the functoriality of the various isomorphisms that appeared in
the constructions of Remark 3.6.2, (i), (ii), that the action [cf.
Theorem 3.10, (i)] of AutFC(Πn, I)

G on the sets Cyclen(Π1),
TpdI(Π2/1) lifts naturally to an action of AutFC(Πn, I)

G on
the sets Cyclen(Π1)

±, TpdI(Π2/1)
±. Thus, the inverse of the

bijective correspondence of the final display of Remark 3.6.2,
(ii), determines a natural AutFC(Πn, I)

G-equivariant lift-
ing

C±
I : Cycle

n(Π1)
± −→ TpdI(Π2/1)

±

of the map CI of Theorem 3.10, (ii). [Thus, the AutFC(Πn, I)
G-

equivariance of C±
I implies, in particular, that C±

I does not fac-
tor through the natural surjection Cyclen(Π1)

± � Cyclen(Π1).]
Moreover, if n ≥ 3, and one regards the Πtpd-conjugacy class
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of cuspidal subgroups of Πtpd determined by J∗
tpd as being

“positive”, then it follows immediately from the definition of
TpdI(Π2/1)

± that this lifting C±
I naturally determines an as-

signment

Cyclen(Π1)
± � J± 	→ syn±I,J±

— where J± 	→ J ∈ Cyclen(Π1), and syn±I,J± denotes an I-

conjugacy class of isomorphisms Πtpd
∼→ CI(J) that coincides,

up to possible composition with a cycle symmetry, with the I-
conjugacy class of isomorphisms synI,J of Theorem 3.10, (iii)
— such that if, in the diagram [of Itpd-, I-conjugacy classes
of isomorphisms] in the display of Theorem 3.10, (iii), (c), one
replaces “syn” by “syn±”, then the diagram commutes, i.e.,
even if one does not allow for possible composition with cycle
symmetries.

Definition 3.11. Suppose that Σ = Primes, and that k = C, i.e.,
that we are in the situation of Definition 2.22. We shall apply the
notational conventions established in Definition 2.22. Moreover, we
shall use similar notation

YE
def
= (Y log

E )an(C)|s, YΠdisc
E

def
= π1(YE), Yn

def
= Y{1,...,n}, Y

def
= Y1,

YΠdisc
n

def
= YΠdisc

{1,...,n},
YpanE/E′ : YE → YE′ , YpΠ

disc

E/E′ : YΠdisc
E � YΠdisc

E′ ,

YΠdisc
E/E′

def
= Ker(YpΠ

disc

E/E′) ⊆ YΠdisc
E ,

Ypann/m
def
= Ypan{1,...,n}/{1,...,m} : Yn −→ Ym,

YpΠ
disc

n/m
def
= YpΠ

disc

{1,...,n}/{1,...,m} :
YΠdisc

n � YΠdisc
m ,

YΠdisc
n/m

def
= YΠdisc

{1,...,n}/{1,...,m} ⊆ YΠdisc
n , YΠ̂disc

(−) ,

YGdisc, YGdisc
i∈E,y, ΠYGdisc , ΠYGdisc

i∈E,y

for objects associated to the stable log curve Y log = Y log
1 to the notation

introduced in Definitions 2.22, 2.23.

Definition 3.12. Let J be a semi-graph of temperoids of HSD-type
[cf. Definition 2.3, (iii)]. Then we shall refer to a triple

(H, S ⊆ Node(H), φ : H�S
∼→ J )

[cf. Definition 2.9] consisting of a semi-graph of temperoids of HSD-

type H, a subset S ⊆ Node(H), and an isomorphism φ : H�S
∼→ J of

semi-graphs of temperoids of HSD-type as a degeneration structure on
J [cf. [CbTpII], Definition 3.23, (i)].
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Definition 3.13. In the situation of Definition 3.11:

(i) Let (YGdisc, S ⊆ Node(YGdisc), φ : YGdisc
�S

∼→ Gdisc) be a degen-
eration structure on Gdisc [cf. Definition 3.12], e ∈ S, and
J ⊆ Πdisc

1 a subgroup of Πdisc
1 . Then we shall say that J ⊆

Πdisc
1 is a cycle-subgroup of Πdisc

1 [with respect to (YGdisc, S ⊆
Node(YGdisc), φ : YGdisc

�S
∼→ Gdisc), associated to e ∈ S] if J is

contained in the Πdisc
1 -conjugacy class of subgroups of Πdisc

1 ob-
tained by forming the image of a nodal subgroup of ΠYGdisc

associated to e via the composite of outer isomorphisms

ΠYGdisc

Φ−1
YGdisc
�S∼−→ ΠYGdisc

�S

∼−→ ΠGdisc
∼−→ Πdisc

1

— where the first arrow is the inverse of the specialization
outer isomorphism ΦYGdisc

�S
[cf. Proposition 2.10], the second ar-

row is the graphic [cf. Definition 2.7, (ii)] outer isomorphism

ΠYGdisc
�S

∼→ ΠGdisc induced by φ, and the third arrow is the nat-

ural outer isomorphism ΠGdisc
∼→ Πdisc

1 of [the second to last
display of] Definition 2.23, (i) [cf. the left-hand portion of Fig-
ure 1].

(ii) Let J ⊆ Πdisc
1 be a cycle-subgroup of Πdisc

1 [cf. (i)]. Thus, we
have
(a) a degeneration structure (YGdisc, S ⊆ Node(YGdisc), φ : YGdisc

�S
∼→

Gdisc) on Gdisc [cf. Definition 3.12],

(b) an isomorphism YΠdisc
1

∼→ Πdisc
1 that is compatible with the

composite of the display of (i) [cf. also [the second to last
display of] Definition 2.23, (i)] in the case where we take

the “(YGdisc, S ⊆ Node(YGdisc), φ : YGdisc
�S

∼→ Gdisc)” of (i) to
be the degeneration structure of (a),

(c) an isomorphism YΠdisc
2

∼→ Πdisc
2 that lifts [cf. Corollary 2.20,

(v)] the isomorphism of (b) and, moreover, determines a
PFC-admissible isomorphism between the respective profi-
nite completions, and

(d) a nodal subgroup Πe ⊆ YΠdisc
1 of YΠdisc

1 associated to a
[uniquely determined — cf. Corollary 2.18, (iii)] node e of
YGdisc

such that the image of the nodal subgroup Πe ⊆ YΠdisc
1 of

(d) via the isomorphism YΠdisc
1

∼→ Πdisc
1 of (b) coincides with

J ⊆ Πdisc
1 . We shall say that a subgroup T ⊆ Πdisc

2/1 of Πdisc
2/1

is a tripodal subgroup associated to J if T coincides — rela-
tive to some choice of data (a), (b), (c), (d) as above [but cf.
also Remark 3.6.1 and Corollary 2.19, (i)!] — with the image,

via the lifting YΠdisc
2

∼→ Πdisc
2 of (c), of some {1, 2}-tripod in

YΠdisc
2/1 ⊆ YΠdisc

2 [cf. Definition 2.23, (ii)] arising from e [cf. Def-

inition 2.23, (iii); [CbTpII], Definition 3.7, (i)], and, moreover,
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the centralizer ZΠdisc
2

(T ) maps bijectively, via pΠ
disc

2/1 : Πdisc
2 �

Πdisc
1 , onto J ⊆ Πdisc

1 [cf. Corollary 2.17, (i); [CbTpII], Lemma
3.11, (iv), (vii)].

(iii) Let J ⊆ Πdisc
1 be a cycle-subgroup of Πdisc

1 [cf. (i)] and T ⊆ Πdisc
2/1

a tripodal subgroup associated to J [cf. (ii)]. Then we shall refer
to a subgroup of T that arises from a nodal (respectively, cusp-
idal) subgroup contained in the {1, 2}-tripod in YΠdisc

2/1 ⊆ YΠdisc
2

of (ii) as a lifting cycle-subgroup (respectively, distinguished
cuspidal subgroup) of T [cf. the right-hand portion of Figure 1].

(iv) Let J ⊆ Πdisc
1 be a cycle-subgroup [cf. (i)]; T ⊆ Πdisc

2/1 a tripodal

subgroup associated to J [cf. (ii)]; I ⊆ T a distinguished cuspi-
dal subgroup of T [cf. (iii)]. Then it follows immediately from
the various definitions involved, together with Theorem 2.24,
(i), that there exists a unique outomorphism ι of T such that

the induced outomorphism of the profinite completion T̂ of

T coincides with the outomorphism of T̂ determined by the

cycle symmetry of T̂ associated to the profinite completion Î
of I [cf. Definition 3.8]. Moreover, since I is commensurably
terminal in T [cf. Corollary 2.18, (v)], it follows immediately
from Corollary 2.17, (ii), that there exists a uniquely deter-
mined I-conjugacy class of automorphisms of T that lifts ι and
preserves I ⊆ T . We shall refer to this I-conjugacy class of
automorphisms of T as the cycle symmetry of T associated to
I.

Theorem 3.14 (Discrete version of canonical liftings of cycles).
In the notation of Definition 3.11, let I ⊆ Πdisc

2/1 ⊆ Πdisc
2 be a cusp-

idal inertia group associated to the diagonal cusp of a fiber of pan2/1;

Πtpd ⊆ Πdisc
3 a 3-central {1, 2, 3}-tripod of Πdisc

3 [cf. Definition 2.23,
(ii), (iii)]; Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does not arise
from a cusp of a fiber of pan3/2; J

∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal subgroups

of Πtpd such that Itpd, J
∗
tpd, and J

∗∗
tpd determine three distinct Πtpd-

conjugacy classes of subgroups of Πtpd. [Note that one verifies immedi-
ately from the various definitions involved that such cuspidal subgroups
Itpd, J

∗
tpd, and J

∗∗
tpd always exist.] For α ∈ AutFC(Πdisc

2 ) [cf. the nota-
tional conventions introduced in the statement of Corollary 2.20], write

α1 ∈ AutFC(Πdisc
1 )

for the automorphism of Πdisc
1 determined by α;

AutFC(Πdisc
2 , I) ⊆ AutFC(Πdisc

2 )

for the subgroup consisting of β ∈ AutFC(Πdisc
2 ) such that β(I) = I;

AutFC(Πdisc
2 )G ⊆ AutFC(Πdisc

2 )
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for the subgroup consisting of β ∈ AutFC(Πdisc
2 ) such that the image of

β via the composite AutFC(Πdisc
2 ) � OutFC(Πdisc

2 )
∼→ OutFC(Πdisc

1 ) →
Out(ΠGdisc) — where the second arrow is the natural bijection of Corol-
lary 2.20, (v), and the third arrow is the homomorphism induced by

the natural outer isomorphism Πdisc
1

∼→ ΠGdisc — is graphic [cf. Defi-
nition 2.7, (ii)];

AutFC(Πdisc
2 , I)G

def
= AutFC(Πdisc

2 , I) ∩ AutFC(Πdisc
2 )G;

Cycle(Πdisc
1 )

for the set of cycle-subgroups of Πdisc
1 [cf. Definition 3.13, (i)];

TpdI(Π
disc
2/1 )

for the set of subgroups T ⊆ Πdisc
2/1 such that T is a tripodal subgroup

associated to some cycle-subgroup of Πdisc
1 [cf. Definition 3.13, (ii)],

and, moreover, I is a distinguished cuspidal subgroup [cf. Defini-
tion 3.13, (iii)] of T . Then the following hold:

(i) Let α ∈ AutFC(Πdisc
2 , I)G, J ∈ Cycle(Πdisc

1 ), and T ∈ TpdI(Π
disc
2/1 ).

Then it holds that

α1(J) ∈ Cycle(Πdisc
1 ), α(T ) ∈ TpdI(Π

disc
2/1 ).

Thus, AutFC(Πdisc
2 , I)G acts naturally on Cycle(Πdisc

1 ), TpdI(Π
disc
2/1 ).

(ii) There exists a unique AutFC(Πdisc
2 , I)G-equivariant [cf. (i)]

map
CI : Cycle(Π

disc
1 ) −→ TpdI(Π

disc
2/1 )

such that, for every J ∈ Cycle(Πdisc
1 ), CI(J) is a tripodal sub-

group associated to J . Moreover, for every α ∈ AutFC(Πdisc
2 , I)G

and J ∈ Cycle(Πdisc
1 ), the isomorphism CI(J)

∼→ CI(α1(J))
induced by α maps every lifting cycle-subgroup [cf. Def-
inition 3.13, (iii)] of CI(J) bijectively onto a lifting cycle-
subgroup of CI(α1(J)).

(iii) There exists an assignment

Cycle(Πdisc
1 ) � J 	→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms

Πtpd
∼→ CI(J) — such that

(a) synI,J maps Itpd bijectively onto I in a fashion that is

compatible with the natural isomorphism Itpd
∼→ I in-

duced by the projection pΠ
disc

{1,2,3}/{1,3} : Π
disc
3 � Πdisc

{1,3} and

the natural outer isomorphism Πdisc
{1,3}

∼→ Πdisc
{1,2} obtained

by switching the labels “2” and “3” [cf. Corollary 2.17,
(ii); Corollary 2.18, (v); [CbTpII], Lemma 3.6, (iv)],

(b) synI,J maps the subgroups J∗
tpd, J

∗∗
tpd bijectively onto lift-

ing cycle-subgroups of CI(J), and
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(c) for α ∈ AutFC(Πdisc
2 , I)G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely de-
termined — cf. the commensurable terminality of Itpd of
Πtpd discussed in Corollary 2.18, (v)] Itpd-conjugacy class
of automorphisms of Πtpd that lifts TΠtpd

(α) [cf. Corol-
lary 2.20, (v); Theorem 2.24, (iv)] and preserves Itpd; the
lower horizontal arrow is the I-conjugacy class of isomor-
phisms induced by α [cf. (ii)] — commutes up to possible
composition with the cycle symmetry of CI(α1(J)) as-
sociated to I [cf. Definition 3.13, (iv)].

Finally, the assignment

J 	→ synI,J

is uniquely determined, up to possible composition with cy-
cle symmetries, by these conditions (a), (b), and (c).

(iv) Let α ∈ AutFC(Πdisc
2 , I)G and J ∈ Cycle(Π1). Then there ex-

ists an automorphism β ∈ AutFC(Πdisc
2 , I)G such that TΠtpd

(β)
[cf. Corollary 2.20, (v); Theorem 2.24, (iv)] is trivial, and,
moreover, α1(J) = β1(J). Finally, the diagram [of Itpd-, I-
conjugacy classes of isomorphisms]

Πtpd Πtpd

synI,J

⏐⏐� ⏐⏐�synI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))

— where the lower horizontal arrow is the isomorphism induced
by β [cf. (ii)] — commutes up to possible composition with
the cycle symmetry of CI(α1(J)) = CI(β1(J)) associated to
I.

Proof. Assertion (i) follows from the various definitions involved. As-
sertion (ii) follows immediately from the evident discrete version [cf.
Corollaries 2.17, (ii); 2.19, (i)] of the argument involving Remark 3.6.1
that was given in the proof of Theorem 3.10, (ii). The existence portion
of assertion (iii) follows, in light of Corollaries 2.17, (ii); 2.20, (i), (v),
from a similar argument to the argument applied in the proof of the ex-
istence portion of Theorem 3.10, (iii) [cf. also the fact that the “synI,J”
of Theorem 3.10, (iii), was constructed from a suitable geometric outer
isomorphism]. The uniqueness portion of assertion (iii) follows from
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the compatibility portion of condition (a), together with the compu-
tation of discrete outomorphism groups given in Theorem 2.24, (ii).
Assertion (iv) follows immediately from assertion (iii), together with a
similar argument to the argument applied in the proof of the surjectiv-
ity portion of Theorem 2.24, (iv) [cf. the argument given in the proof
of Theorem 3.10, (iv)]. This completes the proof of Theorem 3.14. �

Remark 3.14.1. One verifies immediately that the discrete construc-
tions of Theorem 3.14, (i), (ii), (iii), (iv), are compatible, in an evident
sense, with the pro-Σ constructions of Theorem 3.10, (i), (ii), (iii), (iv).
We leave the routine details to the reader.

Remark 3.14.2. One verifies immediately that remarks analogous to
Remarks 3.6.2, 3.10.1 in the profinite case may be made in the dis-
crete situation treated in Theorem 3.14. In this context, we observe
that the theory of the “modules of local orientations Λ” developed in
[CbTpI], §3, admits a straightforward discrete analogue, which may be

applied to conclude that the “orientation isomorphisms J
∼→ ΛG” of

Remark 3.6.2, (i), are compatible with the natural discrete structures on
the domain and codomain. Alternatively, in the discrete case, relative
to the notation of Definition 2.2, (iii), one may think of these modules
“Λ” as the Z-duals of the second relative singular cohomology modules
[with Z-coefficients]

H2(UX , ∂UX ;Z)

— cf. the discussion of orientations in [CbTpI], Introduction. Then
the discrete version of the key isomorphisms [cf. the constructions of
Remark 3.6.2] of [CbTpI], Corollary 3.9, (v), (vi), may be obtained by
considering the connecting homomorphism [from first to second coho-
mology modules] in the long exact cohomology sequence associated to
the pair (UX , ∂UX). We leave the routine details to the reader.
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Appendix. Explicit limit seminorms associated to

sequences of toric surfaces

In the proof of Corollary 1.15, (ii), we considered sequences of dis-
crete valuations that arose from vertices or edges of the dual semi-
graphs associated to the geometric special fibers of a tower of coverings
of stable log curves and, in particular, observed that the convergence
of a suitable subsequence of such a sequence follows immediately from
the general theory of Berkovich spaces. In the present Appendix, we
reexamine this convergence phenomenon from a more elementary and
explicit— albeit logically unnecessary, from the point of view of proving
Corollary 1.15, (ii)! — point of view that only requires a knowledge
of elementary facts concerning log regular log schemes, i.e., without
applying the terminology and notions [e.g., of “Stone-Čech compact-
ifications”] that frequently appear in the general theory of Berkovich
spaces [cf. the proof of [Brk1], Theorem 1.2.1]. In particular, we discuss
the notion of a “stratum” of a “toric surface” [cf. Definition A.1 below],
which generalizes the notion of a vertex or edge of the dual graph of
the special fiber of a stable curve over a complete discrete valuation
ring. We observe that such a stratum determines a discrete valuation
[cf. Definition A.4] and consider, at a quite explicit level, the limit of a
suitable subsequence of a given sequence of such discrete valuations [cf.
Theorem A.7 below]. The material presented in this Appendix is quite
elementary and “well-known”, but we chose to include it in the present
paper since we were unable to find a suitable reference that discusses
this material from a similar point of view.
In the present Appendix, let R be a complete discrete valuation ring.

Write K for the field of fractions of R and S log for the log scheme

obtained by equipping S def
= Spec(R) with the log structure determined

by the unique closed point of S.
Definition A..1.

(i) We shall refer to an fs log scheme X log over S log as a toric
surface over S log if the following conditions are satisfied:
(a) The underlying scheme X of X log is of finite type, flat,

and of pure relative dimension one [i.e., every irreducible
component of every fiber of the underlying morphism of
schemes X → S is of dimension one] over S.

(b) The fs log scheme X log is log regular.
(c) The interior [cf., e.g., [MT], Definition 5.1, (i)] of the log

scheme X log is equal to the open subscheme X ×RK ⊆ X .
Given two toric surfaces over S log, there is an evident notion
of isomorphism of toric surfaces over S log.

(ii) Let X log be a toric surface over S log [cf. (i)] and n a nonnegative
integer. Write X [n] ⊆ X for the n-interior of X log [cf. [MT],
Definition 5.1, (i)] and X [−1] ⊆ X for the empty subscheme.
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Then we shall refer to a connected component of X [n] \ X [n−1]

as an n-stratum of X log. We shall write

Strn(X log)

for the set of n-strata of X log [so Strn(X log) = ∅ if n ≥ 3] and

Str(X log)
def
= Str1(X log) � Str2(X log).

Definition A..2. Let I be a totally ordered set that is isomorphic to
N [equipped with its usual ordering]. In particular, it makes sense to
speak of “limits i → ∞” of collections of objects indexed by i ∈ I, as
well as to speak of the “next largest element” i+ 1 ∈ I associated to a
given element i ∈ I. Then we shall refer to a sequence of fs log schemes

· · · −−−→ X log
i+1 −−−→ X log

i −−−→ · · ·
— where i ranges over the elements of I — over S log [indexed by I] as

a sequence of toric surfaces over S log if, for each i ∈ I, X log
i is a toric

surface over S log [cf. Definition A.1, (i)], and, moreover, the morphism

X log
i+1 → X log

i is dominant. Observe that the horizontal arrows of the
above diagram determine [by considering the induced maps of generic
points of strata] a sequence of maps of sets

· · · −→ Str(X log
i+1) −→ Str(X log

i ) −→ · · · .
Finally, given two sequences of toric surfaces over S log, there is an
evident notion of isomorphism of sequences of toric surfaces over S log.

Definition A..3. Let X log be a toric surface over S log and A a strict
henselization of X at [the closed point determined by] z ∈ Str2(X log)
[cf. Definition A.1, (i), (ii)]. Write F for the field of fractions of A; k for

the residue field of A; mA for the maximal ideal of A; Xz
def
= Spec(A);

MX for the sheaf of monoids on X that defines the log structure of
X log; M for the fiber of MX/O×

X at the maximal ideal of A;

Q
def
= Hom(M,Q≥0) ⊆ P

def
= Hom(M,R≥0) ⊆ V

def
= Hom(M,R)

— where we write Q≥0, R≥0 for the respective submonoids deter-
mined by the nonnegative elements of the [additive groups] Q, R and
“Hom(M,−)” for the monoid consisting of homomorphisms of monoids
from M to “(−)”. Thus, one verifies easily that V is equipped with a
natural structure of two-dimensional vector space over R. In the fol-
lowing, we shall use the superscript “gp” to denote the groupification
of any of the monoids of the above discussion.

(i) We shall say that a submonoid L ⊆ P of P is a P -ray if L
is the R≥0-orbit of some nonzero element of P , relative to the
natural [multiplicative] action of R≥0 on P .
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(ii) We shall say that a P -ray L ⊆ P [cf. (i)] is rational (respec-
tively, irrational) if L ∩Q �= {0} (respectively, L ∩Q = {0}).

(iii) Let L ⊆ P be a rational P -ray [cf. (i), (ii)]. Then we shall
write vL : F

× → Q ⊆ R for the discrete valuation associated
to the irreducible component of the blow-up of Xz associated
to L ⊆ P , normalized so as to map each prime element πR of
R ⊆ F to 1 ∈ Q. That is to say, if λ ∈ L [which, by a slight
abuse of notation, we regard as a homomorphism Mgp → R]
maps πR 	→ 1 ∈ Q [so λ ∈ L ∩ Q], and f ∈ F lies in the
A×-orbit determined by m ∈Mgp, then

vL(f) = λ(m) ∈ Q.

Here, we observe that [one verifies easily that] the submonoid

ML
def
= λ−1(Q≥0) ⊆Mgp is isomorphic to Z×N. In particular,

if we denote by FL ⊆ F the set of f ∈ F that lie in the
A×-orbits determined by m ∈ ML and write AL ⊆ F for the
A-subalgebra generated by f ∈ FL, then the “blow-up of Xz

associated to L” referred to above may be described explicitly
as

XL
def
= Spec(AL) −→ Xz.

Indeed, if we write pL ⊆ AL for the ideal generated by the set of
f ∈ F that lie in the A×-orbits determined by the noninvertible
elements m ∈ML, then it follows immediately from the simple
structure of the monoid Z × N that pL is the prime ideal of
height one in AL that corresponds to the discrete valuation
vL, and that the k-algebra AL/pL is isomorphic to k[U,U−1],
where U is an indeterminate.

(iv) Write MS for the sheaf of monoids on S that defines the log
structure of S log; MR for the fiber of MS/O×

S at the unique

closed point of S; VR def
= Hom(MR,R). Then one verifies easily

that VR is a one-dimensional vector space over R, and that
the morphism X log → S log determines an R-linear surjection
V � VR. Let eα, eβ ∈ P be such that R≥0 · eα +R≥0 · eβ = P ,
and, moreover, the images of eα, eβ in VR coincide. [Note
that the existence of such elements eα, eβ ∈ P follows, e.g.,
from [ExtFam], Proposition 1.7.] Then we shall refer to the
[necessarily rational — cf. (ii)] P -ray R≥0 · (eα + eβ) ⊆ P [cf.
(i)] as the midpoint P -ray at z ∈ Str2(X log). Here, we note
that one verifies easily that the P -ray R≥0 · (eα + eβ) does not
depend on the choice of the pair (eα, eβ).

(v) We shall refer to a valuation w : F× → R as admissible if w
dominates A and maps each prime element πR of R ⊆ F to
1 ∈ R. Let w be an admissible valuation. Then by restricting
w to the elements f ∈ F that lie in the A×-orbits determined
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by m ∈ M , one obtains a nonzero homomorphism of monoids
M → R≥0, i.e., an element of P . We shall refer to the P -ray
Lw determined by this element of P as the P -ray associated
to the admissible valuation w. Thus, if Lw is rational [cf. (ii)],
then it follows immediately from the definitions that, in the
notation of (iii), the valuation of A determined by w extends
to a valuation of ALw (⊇ A).

Remark A..3.1. In the notation of Definition A.3, the usual topology
on the real vector space V naturally determines a topology on the
subspace P ⊆ V , as well as on the set of P -rays [i.e., which may
be regarded as the complement of the “zero element” in the quotient
space P/R≥0]. Moreover, one verifies easily that, if eα and eβ are as in
Definition A.3, (iv), then the assignment

R ⊇ [0, 1] � γ 	→ R≥0 · (γ · eα + (1− γ) · eβ)
determines a homeomorphism of the closed interval [0, 1] ⊆ R onto the
resulting topological space of P -rays, and that the subset of rational
P -rays is dense in the space of P -rays. In particular, it makes sense
to speak of non-extremal (respectively, extremal) P -rays, i.e., P -rays
that lie (respectively, do not lie) in the interior — i.e., relative to
the homeomorphism just discussed, the open interval (0, 1) ⊆ [0, 1]
(respectively, the endpoints {0, 1} ⊆ [0, 1]) — of the space of P -rays.
Finally, we observe that the two extremal P -rays are rational, and that
a rational P -ray is non-extremal if and only if its associated discrete
valuation [cf. Definition A.3, (iii)] is admissible [cf. Definition A.3, (v)].

Definition A..4. Let X log be a toric surface over S log; z ∈ Str(X log)
[cf. Definition A.1, (i), (ii)]. Write F for the residue field of the generic
point of the irreducible component of X on which [the subset of X
determined by] z ∈ Str(X log) lies. Then one may associate to z ∈
Str(X log) a collection of distinguished valuations on F , as well as a
uniquely determined canonical valuation on F , as follows:

(i) If z is a 1-stratum, then we take both the unique distinguished
valuation and the canonical valuation associated to z to be the
discrete valuation

F× −→ Q ⊆ R

associated to the prime of height 1 determined by z, normalized
so as to map each prime element πR of R ⊆ F to 1 ∈ Q.

(ii) If z is a 2-stratum, then we take the collection of distinguished
valuations associated to z to be the discrete valuations

F× −→ Q ⊆ R
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determined by the restrictions of the discrete valuations asso-
ciated to the rational P -rays [cf. Definition A.3, (iii)]. We take
the canonical valuation associated to z to be the discrete val-
uation determined by the restriction of the discrete valuation
associated to the midpoint P -ray at z [cf. Definition A.3, (iii),
(iv)].

Here, we note that the construction from z of either the collection of dis-
tinguished valuations or the uniquely determined canonical valuation is
functorial with respect to arbitrary isomorphisms of pairs (X log, z) [i.e.,
pairs consisting of a toric surface over S log and an element of “Str(−)”
of the toric surface].

Remark A..4.1. One verifies immediately that the [noncuspidal] val-
uations of the discussion preceding Corollary 1.15 correspond precisely
to the canonical valuations of Definition A.4.

Lemma A..5 (Valuations associated to irrational rays). In the
notation of Definition A.3, let L ⊆ P be an irrational P -ray [cf.
Definition A.3, (i), (ii)], {Li}∞i=1 a sequence of P -rays such that L =
limi→∞ Li [cf. Remark A..3.1], and {wi}∞i=1 a sequence of admissible
valuations such that, for each positive integer i, Li is the P -ray asso-
ciated to wi [cf. Definition A.3, (v)]. Then there exists an admissible
valuation [cf. Definition A.3, (v)]

vL : F
× −→ R

which satisfies the following conditions:

(a) The P -ray associated to vL [cf. Definition A.3, (v)] is equal to
L.

(b) For each f ∈ F×, it holds that

vL(f) = lim
i→∞

wi(f).

(c) If λ ∈ L maps a prime element πR of R to 1 ∈ R, J is a
nonempty finite set, {mj}j∈J is a collection of distinct ele-
ments of Mgp, and {fj}j∈J is a collection of elements of F
such that fj lies in the A×-orbit determined by mj, then

vL(
∑
j∈J

fj) = min
j∈J

λ(mj) ∈ R.

Moreover, this valuation vL is the unique admissible valuation [i.e., in
the sense of Definition A.3, (v)] that satisfies condition (a). In partic-
ular, vL depends only on the P -ray L ⊆ P , i.e., is independent of
the choice of the sequences {Li}∞i=1 and {wi}∞i=1.
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Proof. One may define a map vL : F
× → R by applying the formula

in the display of condition (c) in the case where J � = 1. Then one
verifies easily that this map vL is a homomorphism [with respect to
the multiplicative structure of F×] and satisfies condition (b). Next,
let us observe that since [we have assumed that] L is irrational, the
map Mgp → R determined by λ ∈ L is injective. Thus, it follows
from condition (b), together with the fact that each of the wi’s is a
valuation, that the map vL satisfies condition (c), which implies that
the map vL is a [necessarily admissible] valuation on F . Moreover, it
follows immediately from the definition of vL that vL satisfies condition
(a). This completes the proof of Lemma A.5. �

Lemma A..6 (Convergence of midpoints of closed intervals).
Let

· · · ⊆ [ai+1, bi+1] ⊆ [ai, bi] ⊆ [ai−1, bi−1] ⊆ · · · ⊆ [a0, b0]
def
= [0, 1] ⊆ R

— where i ranges over the nonnegative integers — be a sequence of
inclusions of nonempty closed intervals in [0, 1]. For each i, write ci for

the midpoint of the closed interval [ai, bi], i.e., ci
def
= (ai+bi)/2 ∈ [ai, bi].

Then the sequence of midpoints {ci}∞i=1 converges.

Proof. This follows immediately from the [easily verified] fact that the
sequences {ai}∞i=1, {bi}∞i=1 converge. �

Theorem A..7 (Explicit limit seminorms associated to sequences
of toric surfaces). Let R be a complete discrete valuation ring
and I a totally ordered set that is isomorphic to N [equipped with its
usual ordering]. Write K for the field of fractions of R and S log for the

log scheme obtained by equipping S def
= Spec(R) with the log structure

determined by the unique closed point of S. Let
· · · −−−→ X log

i+1 −−−→ X log
i −−−→ · · ·

be a sequence of toric surfaces over S log indexed by I [cf. Definition A.2]
and

{zi}i∈I ∈ lim←−
i∈I

Str(X log
i )

[cf. Definitions A.1, (ii); A.2]. Then, after possibly replacing I by a
suitable cofinal subset of I, there exist sequences

{vi : F×
i → R}i∈I , {vzi}i∈I

— where, for each i ∈ I, Fi denotes the residue field of some point
xi ∈ Xi ×R K; vi : F

×
i → R is a valuation; vzi is a distinguished

valuation associated to zi [cf. Definition A.4] — such that
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(a) vi maps each prime element of R ⊆ Fi to 1 ∈ R [which thus
implies that vi dominates R];

(b) the xi’s and vi’s are compatible [in the evident sense] with

respect to the upper horizontal arrows X log
i+1 → X log

i of the above
diagram;

(c) for every nonzero rational function f on the irreducible compo-
nent of Xi containing xi that is regular at xi, hence determines
an element f ∈ Fi [cf. Remark A..7.1 below], it holds that

vi(f) = lim
j→∞

vzj(f)

[cf. Definition A.4] — where j ranges over the elements of I
that are ≥ i, and we regard vi as a map defined on Fi by sending
Fi � 0 	→ +∞.

Finally, these sequences of valuations {vi}i∈I , {vzi}i∈I may be con-
structed in a way that is functorial [in the evident sense] with respect
to isomorphisms of pairs consisting of a sequence of toric surfaces over
S log and a compatible collection of strata [i.e., “{zi}i∈I”].
Proof. Until further notice, we take, for each i ∈ I, vzi to be the canon-
ical valuation associated to zi [cf. Definition A.4]. Next, let us observe
that one verifies easily that we may assume without loss of generality,
by replacing I by a suitable cofinal subset of I, that there exists an
element n ∈ {1, 2} such that every member of {zi} is an n-stratum,
i.e., one of the following conditions is satisfied:

(1) Every member of {zi} is a 1-stratum.
(2) Every member of {zi} is a 2-stratum.

First, we consider Theorem A.7 in the case where condition (1) is
satisfied. For each i ∈ I, write Zi ⊆ Xi for the reduced closed sub-
scheme of Xi whose underlying closed subset [⊆ Xi] is the closure of the
subset of X determined by the 1-stratum zi. Then let us observe that
if, after possibly replacing I by a suitable cofinal subset of I, it holds
that, for each i ∈ I, the composite Zi+1 ↪→ Xi+1 → Xi is quasi-finite,
then the system consisting of the vzi ’s [cf. Definition A.4, (i)] already
yields a system of valuations {vi}i∈I as desired. Thus, we may assume
without loss of generality, by replacing I by a suitable cofinal subset of
I, that, for each i ∈ I, the composite Zi+1 ↪→ Xi+1 → Xi is not quasi-
finite, i.e., that the image of this composite is a closed point yi ∈ Xi of
Xi. Here, we observe that since we are operating under the assumption
that condition (1) is satisfied, it follows from the fact that zi+1 	→ zi
that yi necessarily lies in the regular locus of Xi.

For each i ∈ I, write Bi for the local ring of Xi at yi ∈ Xi, Ei for
the field of fractions of Bi, and vzi : E

×
i → R for the discrete valuation

defined in Definition A.4, (i). Thus, one verifies immediately that the
morphisms

· · · → Xi+1 → Xi → · · ·
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induce compatible chains of injections

· · · ↪→ Bi ↪→ Bi+1 ↪→ · · · ,
· · · ↪→ Ei ↪→ Ei+1 ↪→ · · · .

Moreover, if πR is a prime element of R, then the discrete valuation
vzi may be interpreted as the discrete valuation of Bi determined by
the unique height one prime of Bi that contains πR. In particular,
since Bi is regular, hence a unique factorization domain, one verifies
immediately — by considering the extent to which positive powers of
an element f ∈ Bi are divisible, in Bi or in Bi+1, by positive powers of
πR — that, for each i ∈ I and f ∈ Bi, it holds that

(0 ≤) vzi(f) ≤ vzi+1
(f). (∗)

For each i ∈ I, write

pi
def
= { f ∈ Bi | lim

j→∞
vzj(f) = +∞} ⊆ Bi.

Then since each vzj is a [discrete] valuation, one verifies immediately
that pi ⊆ Bi is a prime ideal of Bi. Moreover, since πR �∈ pi, we
conclude that the ideal pi is not maximal, i.e., that the height of pi is
∈ {0, 1}. Next, let us observe that if, after possibly replacing I by a
suitable cofinal subset of I, it holds that, for each i ∈ I, the prime ideal
pi is of height 1, then it follows immediately that pi determines a closed
point xi of the generic fiber of Xi, and that, if we write Fi for the residue
field of Xi at xi and vi : F

×
i → R for the uniquely determined [since Fi

is a finite extension of K] discrete valuation on Fi that extends the
given discrete valuation on K and maps πR 	→ 1 ∈ R, then the limit
limj→∞ vzj(−) [cf. (∗)] determines a valuation on Fi = (Bi)pi/pi(Bi)pi
that necessarily coincides [since Fi is a finite extension of K] with vi;
in particular, one obtains a system of valuations {vi}i∈I as desired.

Thus, we may assume without loss of generality, by replacing I by
a suitable cofinal subset of I, that, for each i ∈ I, the prime ideal
pi is of height 0, i.e., pi = {0}, hence determines a generic point xi
of some irreducible component of Xi such that Ei may be naturally
identified with the residue field Fi of Xi at xi. But this implies that,
for f ∈ E×

i = F×
i , the quantity

vi(f)
def
= lim

j→∞
vzj(f) ∈ R

is well-defined [cf. (∗)]. Moreover, one verifies immediately that this
definition of vi determines a valuation on Ei = Fi. In particular, one
obtains a system of valuations {vi}i∈I as desired. This completes the
proof of Theorem A.7 in the case where condition (1) is satisfied.
Next, we consider Theorem A.7 in the case where condition (2) is

satisfied. For each i ∈ I, write Qi, Pi, Vi for the objects “Q”, “P”, “V ”
defined in Definition A.3 in the case where we take the data “(X log, z ∈
Str2(X log))” in Definition A.3 to be (X log

i , zi ∈ Str2(X log
i )). Then one
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verifies easily that the morphism X log
i+1 → X log

i determines a nontrivial
R-linear map Vi+1 → Vi that maps Qi+1, Pi+1 ⊆ Vi+1 into Qi, Pi ⊆ Vi,
respectively.
Next, let us observe that if, after possibly replacing I by a suitable

cofinal subset of I, it holds that, for each i ∈ I, the R-linear map
Vi+1 → Vi is of rank one, i.e., the image of Pi+1 ⊆ Vi+1 in Vi is a rational
Pi-ray Li [cf. Definition A.3, (i), (ii)], then we may assume without loss
of generality, by taking vzi to be the distinguished valuation associated
to the rational Pi-ray Li [cf. Definition A.4, (ii); Remark A..7.2 below]
and then replacing the pair (Xi, zi) by the pair consisting of the blow-
up of Xi and the 1-stratum of this blow-up determined by Li [cf. the
discussion of Definition A.3, (iii)], that condition (1) is satisfied. Thus,
we may assume without loss of generality, by replacing I by a suitable
cofinal subset of I, that, for each i ∈ I, the R-linear map Vi+1 → Vi is of
rank �= 1, hence [cf. the existence of the R-linear surjection “V � VR”
of Definition A.3, (iv)] of rank two, i.e., an isomorphism.

Since the R-linear map Vi+1 → Vi is an isomorphism, it follows im-
mediately from Lemma A.6, together with Remark A..3.1, that, for each
i ∈ I, the sequence consisting of the images in Pi of the midpoint Pj-
rays [cf. Definition A.3, (iv)], where j ranges over the elements of I such
that j ≥ i, converges to a [not necessarily rational] Pi-ray Li,∞ ⊆ Pi.
If, after possibly replacing I by a suitable cofinal subset of I, it holds
that, for each i ∈ I, the Pi-ray Li,∞ is rational, then we may assume
without loss of generality, by taking vzi to be the distinguished valua-
tion associated to the rational Pi-ray Li,∞ [cf. Definition A.4, (ii);
Remark A..7.2 below] and then replacing the pair (Xi, zi) by the pair
consisting of the blow-up of Xi and the 1-stratum of this blow-up deter-
mined by Li,∞ [cf. the discussion of Definition A.3, (iii)], that condition
(1) is satisfied. Thus, it remains to consider the case in which we may
assume without loss of generality, by replacing I by a suitable cofinal
subset of I, that, for each i ∈ I, the Pi-ray Li,∞ is irrational. Then
the system consisting of the valuations vLi,∞ ’s of Lemma A.5 yields a
system of valuations {vi}i∈I as desired. This completes the proof of
Theorem A.7. �

Remark A..7.1. In the situation of Theorem A.7, for I � j ≥ i, write
zij for the irreducible locally closed subset of Xi determined by the image

of the stratum zj in Xi. Thus, zij′ ⊆ zij for all j′ ≥ j, and one verifies
immediately that the intersection

zi∞
def
=

⋂
j≥i

zij

is nonempty. Moreover, it follows immediately from the constructions
discussed in the proof of Theorem A.7 that if ξi ∈ zi∞, then any element
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f of the local ring OXi,ξi of Xi at ξi determines a rational function on
the irreducible component of Xi containing xi that is regular at xi [cf.
Theorem A.7, (c)].

Remark A..7.2. Although, in certain cases [cf. the final portion of the
proof of Theorem A.7], the distinguished valuation vzi in the statement
of Theorem A.7 is not necessarily canonical, the system of valuations
{vi}i∈I obtained in Theorem A.7 is nevertheless sufficient [cf. the func-
toriality discussed in the final portion of Theorem A.7] to derive the
conclusion of Corollary 1.15, (ii), i.e., without applying the theory of
[Brk1].
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